
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1993

Criteria for collected data in least squares circle
fitting
Jyh-jeng Deng
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Industrial Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Deng, Jyh-jeng, "Criteria for collected data in least squares circle fitting " (1993). Retrospective Theses and Dissertations. 10808.
https://lib.dr.iastate.edu/rtd/10808

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F10808&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F10808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F10808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F10808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F10808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F10808&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=lib.dr.iastate.edu%2Frtd%2F10808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/10808?utm_source=lib.dr.iastate.edu%2Frtd%2F10808&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

U-M-I 
MICROFILMED 1994 



www.manaraa.com

INFORMATION TO USERS 

This manuscript has been reproduced from the microfilm master. UMI 
fihns the text directly from the original or copy submitted. Thus, some 
thesis and dissertation copies are in typewriter face, while others may 
be from any type of computer printer. 

Hie quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality 
illustrations and photographs, print bleedthrough, substandard margins, 
and improper alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a complete 
manuscript and there are missing pages, these will be noted. Also, if 
unauthorized copyright material had to be removed, a note will indicate 
the deletion. 

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand comer and 
continuing from left to right in equal sections with small overlaps. Each 
original is also photographed in one exposure and is included in 
reduced form at the back of the book. 

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6" x 9" black and white 
photographic prints are available for any photographs or illustrations 
appearing in this copy for an additional charge. Contact UMI directly 
to order. 

University Microfilms International 
A Bell & Howell Information Company 

300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 
313/761-4700 800/521-0600 



www.manaraa.com



www.manaraa.com

Order Number 9418968 

Criteria for collected data in least squares circle fitting 

Deng, Jyh-jeng, Ph.D. 

Iowa State University, 1993 

Copyright ©1993 hy Deng, Jyh-jeng. All rights reserved. 

U M I  
300 N. ZeebRd. 
Ann Aiiwr, MI 48106 



www.manaraa.com



www.manaraa.com

Criteria for collected data in least squares circle fitting 

by 

Jyh-jeng Deng 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Department: Industrial and Manufacturing Systems Engineering 
Major: Industrial Engineering 

Approved: Members of the Committee: 

In Charge of MajorWork 

For the Major Department 

For the Graduate College 

Iowa State University 
Ames, Iowa 

1993 

Copyright © Jyh-jeng Deng, 1993. All rights reserved. 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

11 

A Dedication 

Thanks, Mom èz Dad. 



www.manaraa.com

Ill 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS xii 

CHAPTER 1. INTRODUCTION 1 

1.1 Motivation 2 

1.2 Cox's Iterative Approach 2 

1.3 LSI Estimation Problem 3 

1.4 Generalized Circle Fitting Method 4 

1.5 Significance of the Research 5 

1.6 Research Objectives 6 

CHAPTER 2. The Nature of /(œ, y )  14 

2.1 Proof for General Cases (i.e., when 5^0) 20 

2.2 Proof for Trivial Cases (i.e., when 5 = 0) 21 

2.3 Illustration 22 

CHAPTER 3. MEASUREMENT OF A CYLINDRICAL FEATURE 27 

3.1 Search Region 28 

CHAPTER 4. POSSIBLE REGION OF THE CENTER OF BEST 

FITTED CIRCLE 31 

4.1 Determination of G„ 32 



www.manaraa.com

iv 

4.1.1 Determination of G|J 32 

4.1.2 Derive Gn from G'^ 36 

4.2 Iterative Procedure for Finding G* 37 

4.2.1 Determination of G^ 37 

4.2.2 Determination of [/„r 43 

4.2.3 Determination of L„cei 44 

4.2.4 Iterative algorithm of searching the upper bound of a: of G* . 48 

CHAPTER 5. GLOBAL MINIMUM OF/(x,î/) 59 

5.1 Taylor Approximation of f { x , y )  59 

5.1.1 Point which satisfies FONCs 60 

5.1.2 Accuracy of Approximation 61 

5.2 /(a:, y) is a Strictly Convex Function in G* 63 

5.3 {xc, yc) is Both the Only Local Minimum and the Only Global Mini­

mum of f{x, y) 65 

5.3.1 Local Minimum and Global Minimum in G* 66 

5.3.2 Local Minimum and Global Minimum in I n t { D )  67 

CHAPTER 6. RESTRICTIONS OF THE CRITERIA 72 

CHAPTER 7. APPLICATION 74 

CHAPTERS. CONCLUSION 82 

BIBLIOGRAPHY 84 

APPENDIX A. E?=i >0 IF (z„ j/c) 7^ (0,0) 88 

A.l 92 

A.1.1 96 



www.manaraa.com

V 

APPENDIX B. IF {xc, Vc) ^ (0,0), THEN AT LEAST ONE OF Sfs <0 97 

B.l 98 

APPENDIX C. THE GLOBAL MINIMUM CONDITIONS OF An 106 

C.l 107 

C.2 109 

APPENDIX D. E?=i(e.--ë)2 < ng 

D.l 120 

D.2 126 

APPENDIX E. THE CONDITIONS OF THE LARGEST G'„ . . . . 128 

APPENDIX F. Lnce' = -Unc8' 131 

APPENDIX G. LnKc = -Un^c 136 

APPENDIX H. Unc9> = Unse> 138 

APPENDIX I. 142 

APPENDIX J. THEOREM 2 144 

APPENDIX K. THE GLOBAL MAXIMUM OF g n { x ,  y ,  6%, 63,, e„) 

IS INVARIANT WHEN (x,j/) IS AT ANY OF THE VERTICES 

OF 146 

APPENDIXL. THE GLOBAL MAXIMUM OF5n,e i , eg , . . . , e»)  

OCCURS WHEN c, = «, V i 150 

APPENDIX M. THE GLOBAL MINIMUM VALUES OF 

ei, 62, . . . , Cn) V £,• AND hn{Sn, -5n, ^2, • • • , «n) V €{ ARE EQUAL . 152 

APPENDIX N. Subroutine of finding LncS' 154 



www.manaraa.com

vi 

APPENDIX O. VALUES OF 5„ AND x; 160 

APPENDIX P. GLOBAL MAXIMUM VALUES OF < 

0 162 

APPENDIX Q. DERIVATION OF 165 

APPENDIX R. FINDING THE GLOBAL MINIMUM OF cos a, . . 167 

APPENDIX S. f { B d r y {Gn))  > /(0,0) 173 

APPENDIX T. THE LIMIT OF 174 

APPENDIX U. MEASUREMENTS OF WORN-OUT BUSHING . 176 



www.manaraa.com

vii 

LIST OF TABLES 

Table 2.1: Cartesian Coordinates of Ten Points 23 

Table 2.2: Transformed Polar Coordinates of Nine Points With the Ori­

gin at Data Point Ar 23 

Table 7.1: The Results of dmim àmax-, and k 76 

Table 7.2: The Results of Local Minima of /(z, y )  in Each Level 76 

Table 7.3: The Results of </(„,•„, and dcW 76 

Table 0.1: Values of s„ and x *  160 

Table P.l: Values of s„, and 162 

Table U.l: Measurements of Worn-Out Bushing 176 



www.manaraa.com

vni 

LIST OF FIGURES 

Figure 1.1: An Illustration of Departure of Circularity. 7 

Figure 1.2: Layout of Four Data Points - Example 1 8 

Figure 1.3: Three-Dimensional Graph for Example 1 9 

Figure 1.4: A Contour Plot for Example 1 9 

Figure 1.5: Layout of Four Data Points - Example 2 10 

Figure 1.6: Three-Dimensional Graph for Example 2 11 

Figure 1.7: A Contour Plot for Example 2 11 

Figure 1.8: Layout of Four Data Points - Example 3 12 

Figure 1.9: Three-Dimensional Graph for Example 3 13 

Figure 1.10: A Contour Plot for Example 3 13 

Figure 2.1: Arrangements of Points Ai, Ag,..., An, and Q 24 

Figure 2.2: Arrangements of Ten Points A\,A2,..., and A\q  24 

Figure 2.3: Three-Dimensional Plot of Ten Data Points and Point A7. . . 25 

Figure 2.4: Relationship Between the Cutting Plane and Ten Data Points. 25 

Figure 2.5: A Relationship Between the Contour of f ( x ,  y )  and its Cutting 

Plane at the Point A7 26 

Figure 2.6: A Cutting Plane at the Point A t  26 



www.manaraa.com

ix 

Figure 3.1: Layout of n Data Points in an Annulus 30 

Figure 4.1: A Possible Arrangement of n Data Points and the Center 

51 

Figure 4.2: A Relationship Between O'Ai and 1 + c,• + 51 

Figure 4.3: The G'^ 52 

Figure 4.4: A Configuration for Searching 52 

Figure 4.5: The Largest 53 

Figure 4.6: The Gn 53 

Figure 4.7: Four Divisions of Annulus 54 

Figure 4.8: Illustration of e,- in Region I Which Minimizes cos 0,' 54 

Figure 4.9: Example of c,- in Region II Which Minimizes cosOj 55 

Figure 4.10: Picture of in Region III Which Minimizes cos 55 

Figure 4.11: Diagram of e, in Region IV Which Minimizes cos 56 

Figure 4.12: Instance of e,-When (a:,, y,) is Between Regions I &: IV. ... 56 

Figure 4.13: Drawing of e,- When (xi,yi) is Between Regions II &: III. ... 57 

Figure 4.14: Sketch of e,-When (a:j,yj) is Between Regions I & II 57 

Figure 4.15: Representation of e,- When is Between Regions III & IV. 58 

Figure 5.1: An approximation of O'Ai by QiAi 71 

Figure 5.2: The arrangement of E (k )* 71 

Figure 6.1: The When n  >  200 and n is a Multiple of 4 73 

Figure 7.1: The Spring Trip Standard 78 

Figure 7.2: The Set Up of the Measurement 78 



www.manaraa.com

X 

Figure 7.3: The Bushing 79 

Figure 7.4: The Aluminum Block 79 

Figure 7.5: The Projection of Data Points in Level 1 80 

Figure 7.6: The Representation of Data Points in Level 2 80 

Figure 7.7: The Picture of Data Points in Level 3 81 

Figure B.l: A Division of n  Equal Sectors in the Inner Circle of the Annulus.103 

Figure B.2: The Components of the ith Sector 103 

Figure B.3: The O' in the Edge OA'i 104 

Figure B.4: The O' in the Triangle 104 

Figure B.5: The 0' in the Segment of the ith Sector 105 

Figure B.6: The Reflection of the Segment of the zth Sector by the Chord 

A'iA'i+, 105 

Figure C.l: A Possible Arrangement of A,-, A,-, 117 

Figure C.2: A New Arrangement of A,', A' 117 

Figure E.l; Illustration of Ç D,- 130 

Figure F.l: A Possible Location of Global Maximum Point Ui{xi,yi) of 

2/î ^21» • • • > ^nl) 135 

Figure F.2: A Symmetrical Counterpart of Figure F.l Reflected by 0(0,0). 135 

Figure H.l: A Possible Location of Global Maximum Point U{xu,yu) and 

Aiuixiui Viu) V i  in the Annulus 141 

Figure H,2: A Counterpart of Figure H.l Reflected by Line x  =  y  141 



www.manaraa.com

xi 

Figure R.l: Diagram of { x c ,  y c )  and (x., y„) when cos a* occurs - Example 

1 171 

Figure R.2: Layout of {xc,yc) and (a:., y») when cos a* occurs - Example 2. 171 

Figure R.3: Representation of (xcjJ/c) and when cos a* occurs -

Example 3 172 

Figure T.l: An Illustration of 5„ as the x  Coordinate of the Intersection 

of Two Circles CAl and CA2 175 



www.manaraa.com

Xll 

ACKNOWLEDGMENTS 

I am especially grateful to Dr. John Jackman and Dr. Way Kuo for their 

guidance, patience, and encouragement throughout the course of this research. For 

helpful criticism and advice on the manuscript and serving as research committee, 

I express my appreciation to Dr. Herbert A. David, Dr. David A. Harville, and 

Dr. Douglas D. Gemmill. In particular. Dr. Herbert A. David suggested the proof 

of Appendix C. I also thank the National Science Foundation, Deere & Company, 

and the Engineering Research Institute at Iowa State University for supporting the 

research project, Functionality and Cost Engineering (FACE), on which I have been 

working during the course of my doctoral program. Special thanks are given to 

Dr. Richard H. Sprague in the Mathematics Department for providing the proof of 

Lemma 3  in  Appendix  A. l .  



www.manaraa.com

1 

CHAPTER 1. INTRODUCTION 

Circularity is a measure of the extent to which a physical surface matches the 

ideal geometry of a circle. Departure from circularity is given by the width of the 

smallest annulus that contains all elements of the surface [1],[2]. As the width of the 

annulus decreases, the circularity improves. Figure 1.1 illustrates this measure with 

a profile of a surface and the enclosing annulus as the shaded region. 

In practice, existing standards [3] suggest that using a set of discrete data points, 

circularity be evaluated as follows. First, a least squares center is calculated from a 

set of measured points. The distance from the center to each data point is calculated 

to determine the minimum and maximum distances. The difference between these is 

the departure from circularity. 

For a given set of data points, the least squares center and best fitted circle is 

obtained by finding the minimum sum of the squares of the distances of measured 

points to their fitted circle [3],[4]. Given that there are n data points (x,-,i/i), V i = 

1,2,..., n, we want to find a circle with center {xc, Vc) and radius Vc that minimizes 

f { x ,  y ,  r )  = (a:.- - x ) ^  + (t/, - y ) ^  - r f .  (1.1) 
,=i 

In order to satisfy this minimum condition, we take the first partial derivative 
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of (1.1) with respect to r  and equate it to zero, obtaining 

r  - { - { y i - y f .  
" «=1 

(1.2) 

Substituting for r in (1.1), our goal is to find the point { x , y )  that gives a mini­

mum for 

This type of problem has also been investigated in the contexts of archaeology [5] 

and microwave engineering [6]. The problem was studied by Cox, [7] who proposed 

the algorithm in section 1.2. 

Coordinate Measurement Machines (CMMs) and the least squares method are a 

popular measurement tool and analysis method used in circularity evaluation. Much 

literature has focused on the "methods divergence" problem [9], however, no investi­

gation has been done on the nature of this analysis method. Our goal in this research 

is to examine f{x,y) carefully and determine under what conditions it will render a 

unique measure of the departure from circularity. 

1.2 Cox's Iterative Approach 

Suppose that ( x , y )  i s  the Cartesian coordinate of the estimated center and r  the 

estimated radius of the best fitted circle. In order to minimize (1.3), {x,y,r) has to 

satisfy 

1=1 \ "• j=i 

1.1 Motivation 

n r,' 
(1.4) 
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—  ^  H i  ~  y  J  y = y X , and (1.5) 

(1.6) 

Here r,- is the distance between the i"' point (a;,',y,) and (a:,t/). Although an explicit 

solution of (1.4), (1.5), and (1.6) cannot be obtained due to the coupling between 

equations, a solution can be obtained through successive iteration. We start with an 

initial guess for the center and use this to calculate the set of r\s and hence a first 

approximation of r using (1.6). This is then inserted into (1.4) and (1.5) to give us 

improved estimates of x and y. We repeat the process until we have satisfied some 

convergence criteria. 

Berman and Culpin [13] have pointed out that Cox's procedure is not trouble-

free and indicated that this was as an LSI estimation problem. They have shown 

empirically that for some sets of data f{x,y) has no minimum, but has a saddle 

point, while for others it has several local minima. They have also shown that when 

data points lie close to the circumference of a circle and are sufficiently dispersed 

around it, (1.4), (1.5) and (1.6) have a unique solution which is at the minimum of 

/(a;, y). However, their work was limited to empirical data. No mathematical proof is 

provided that shows the general behavior of f{x,y). Also, there was no investigation 

of the conditions under which a unique solution can be obtained. 

Here we use three sets of data points to illustrate three specific cases, i.e., a 

unique global minimum of f{x,y), multiple local minimaof/(a;, j/), and no minimum, 

but only saddle points of f{x, y). In Figure 1.2, we are given a set of four data points 

1.3 LSI Estimation Problem 
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with Cartesian coordinates of (1.1,0), (0,1), (—1.1,0), and (0, —1). Then we draw a 

three-dimensional graph of -f{x,y) with respect to x and y as shown in Figure 1.3 

to show the surface profile. It is clear that there is a unique global minimum of 

f{x,y). In Figure 1.4, we look from the top of the {x,y) axes. The darker shaded 

areas correspond to the lower value of — f{x,y). The square white area indicates the 

unique global minimum. In Figure 1.5, we are given a set of data points of (4,0), 

(0,1), (—4,0), and (0, —1) representing an elliptical surface. Figures 1.6 and 1.7 are 

the corresponding three-dimensional graph and contour graph of Figure 1.5. They 

indicate that there exist two local minima of f{x,y). In Figure 1.8, we distend the 

circle further to obtain a set of data points of (6,0), (0,1), (—6,0), and (0,-1). 

Figures 1.9 and 1.10 are the corresponding three-dimensional graph and contour 

graph of —f{x,y) for Figure 1.8. They indicate that there exist three saddle points 

of f{x,y), none of them is a local minimum. 

1.4 Generalized Circle Fitting Method 

The metric presented in (1.1) is the L2 metric [14]. For the general case of any 

Lp metric, our objective function in (1.1) becomes 

Taking the first partial derivative of (1.7) with respect to r  and equating it to zero, 

we can solve for r and substitute its value into (1.7). Our goal is to find the point 

{x,y) that gives a minimum for 

(1.7) 
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We can generalize the problem further from the least square estimation to the 

the Lq norm estimation [15]. In the Lq norm estimation, our objective function (1.7) 

becomes 

with p, 9 > 1. We have constrained our investigation to p = ç = 2 due to common 

practice of circularity evaluation. We have not discussed the statistical model of the 

observed data points and its implication. The choice of an optimal p and q with 

respect to the statistical (asymptotic) efficiencies [16] of the estimators of (a;,j/,r) is 

not considered. The effect of the distribution of points is considered to be a separate 

issue and is outside the scope of this discussion. 

The significance of the research is that for the first time, we can provide criteria 

for the arrangement of data points obtained from surface of a cylindrical part with 

a CMM such that it will render a unique measure of the departure from circularity. 

We use this measure of departure from circularity to characterize cylindrical surfaces. 

The criteria will cover the majority of data sets encountered with these types of 

measurement. 

Using the criteria, practitioners can avoid making major errors when evaluat­

ing the measure of departure from circularity for cylindrical precision parts. If the 

measure of departure from circularity is no larger than its corresponding circularity 

tolerance, then the part is regarded as satisfying the design specifications. 

(1.9) 

1.5 Significance of the Research 
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1.6 Research Objectives 

If f { x ,  y )  is quasiconvex, (a sufficient condition to ensure the existence of a unique 

local minimum in the entire domain for f{x,y) (except for special cases)) [11], then 

we can use any of the standard optimization procedures (such as found in Matlab 

[10]) to solve this problem. Under this condition, if we find the local minimum, we 

also find the global minimum. 

However, we have found that f { x , y )  is not quasiconvex. Thus, we need to 

determine under what conditions f{x,y) will have a unique global minimum. The 

proof of nonquasiconvexity of f{x, y) is valid forn > 4 points with arbitrary Cartesian 

coordinates. 

We develop specific criteria for the data points such that there is a unique global 

minimum of /(x, y). The criteria have to be consistent with the modern measurement 

technology (such as a CMM), and applicable to the majority of data sets encountered 

with these types of measurements. 
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Ar 

Figure 1.1: An Illustration of Departure of Circularity. 
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-2  

- I l  

-2  

Figure 1.2: Layout of Four Data Points - Example 1. 
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Figure 1.3: Three-Dimensional Graph for Example 1. 

- 2 - 1 0  1  2  

Figure 1.4: A Contour Plot for Example 1. 
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2 

-2  

- 2  

-4 y 

Figure 1.5: Layout of Four Data Points - Example 2. 



www.manaraa.com

11 

two local minima 

Figure 1.6: Three-Dimensional Graph for Example 2. 

Figure 1.7: A Contour Plot for Example 2. 



www.manaraa.com

12 

y 
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4 

-4 -2 

- 2  

-4 

- 6  

Figure 1.8: Layout of Four Data Points - Example 3. 
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three saddl» points 

Figure 1.9: Three-Dimensional Graph for Example 3. 

Figure 1.10: A Contour Plot for Example 3. 
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CHAPTER 2. The Nature of /(a;, y )  

We start by showing that f { x , y )  is a continuous function V x ^ y .  

Proposition 1 Function f { x ,  y )  is continuous. 

Before doing the proof, we need the following corollary. 

Corollary 3.7 of chapter 2 in Mendelson[12]: Let (%, cf), be met­
ric spaces. Let f : X Y and g '.Y —* Z he continuous. Then gf : X —* Z is 
continuous. 

Therefore by (2.2), (2.3) and corollary 3.7 of chapter 2 in Mendelson [12], we 

Proof: 

Pi(®, y )  =  { x i  -  z)^ + { y i  - t/)^ 

Being a polynomial, pi{x,y) is continuous. Furthermore let 

q { x )  =  y / x  for z > 0. 

(2.1) 

It is clear that q { x )  is continuous for x > 0. So we obtain 

Pi : ( R ,  R )  R ' ^  is continuous, and 

q: R^ R^ is continuous. 

(2.2) 

(2.3) 

obtain 

q o p i  • .  { R ,  R )  —+ R " ^  is continuous 
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where 

q o p i { x , y )  = y j i x i -  x Y  - ^ r i V i - y f .  

2. Given that q  o p i { x ,  y )  is continuous V i as we have shown, we obtain that 

h i { x , y )  -  ^ { X i  -  x y  + (yi - y)2 - - 53 ̂ { x j  - z)' + (% - yY 
^i=x 

is a continuous function. Let 

k ( x )  =  x ^ .  

It is clear that k { x )  is continuous. So we obtain 

h i  :  { R ,  R )  R  is continuous, and (2.4) 

k  :  R — *  R ^  is continuous. (2.5) 

Therefore by (2.4), (2.5) and corollary 3.7 of chapter 2 in Mendelson [12], we 
obtain 

k o  h i  :  { R , R )  ̂  R ' ^  is continuous 

V i ,  where 

k o h i { x , y )  -  ( ^ ^ { x i  -  x)2 + (y^ - y)2_ 

^ E \/(®i - + ( y j  -
" j=i 

3. Since k  o h i { x , y )  is continuous V z, so k  o h i { x ^ y )  is continuous, i.e., 

n 

f i x , y )  = ^ k o h i { x , y )  
i = l  

=  5 ]  ( \ / { x i - x y +  { y i - y Y -
t=i ^ 

1 " I \ ̂  

" i=i / 

is continuous. 
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This concludes the proof. 

Proposition 2 Function f { x ,  y )  is not a quasiconvex function. 

The key to proving Proposition 2 is to find at least one point at which the function 

f{x,y) is not quasiconvex. To find this point, it is sufficient to find a cutting plane 

perpendicular to the x, y plane such that the graph function on the cutting plane is 

not quasiconvex. We will show that there exists at least one such cutting plane for 

f{x,y). The proofs are shown in two parts: general cases and trivial cases. Before 

doing the proof, we need the following definition and lemma. 

Quasiconvexity at x of definition 3.5.13 in Bazaraa [11]: Let 5 be a nonempty 
convex set in En, and f : S —* E\. The function / is said to be quasiconvex at 
X e 5 if 

/[Ax + (1 - A)x] < m a x i m u m { f { x ) ,  /(x)} 

for each A 6 (0,1) and for each x € 5. 

Lemma 1 Given n data points, {Ai, / l2,A3,. . . ,yl„},  with Ai as origin and point 

Q{r cos 6, r sin 0) a point on the boundary of an arbitrarily small disc that surrounds 

po in t  A t ,  i t  i s  pos s ib l e  t o  f i nd  a  po in t  Q  such  t ha t  t he  d i f f e r ence  be tween  t he  f { A i )  

and f{Q) will be a maximum (except for trivial cases). 

Lemma 1 is proved as follows. 

Proof: 

Using Ai as the origin we obtain, Ai(0,0), A2 {Ri cos «i, Ri sinai), A3 (Agcos «2, 

Agsinag), ..., and >l„( /2„_i cosa„_i, /?„-! sinan-i), where Ri is the distance be­

tween points Ai and Ai+i and a, is the polar angle of with respect to Ai. Let 
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point Q(rcos^, rsin^) be a point on the boundary of an arbitrarily small disc that 

surrounds point A\ (see Figure 2.1). If we let m, be the ratio between Ri and r, 

the value of /(a;, y) at A\ is given by 

/(0,0) = r^\r-^ - - E (2.6) 
^ ,=1 ^ \<}<k<n 

Note that R q  = mor and R o  can be regarded as distance from point A \  to itself, 

which results in mo = 0. The function value at Q  is evaluated as 

n — 1 n-i 
f { r  c o s  9 ,  r  s i n  9 )  =  r ^ [ n  + Yl m? — 2 Yl m, cos(^ — g,)] 

^ 1=1 .=1 

— ^  J l  +  m j _ i  — 2m,-i c o s { 9  -  a j - i )  *  
"  i<j<fc<n 

\/l + - 2mfc_i c o s { 9  -  O k - i ) .  (2.7) 

Let g { 9 )  be the difference between f { A i )  and f { Q ) .  By subtracting (2.7) from 

(2.6), we find that 

g ( 9 )  =  - - r ^  m j - i m k - i  -

J l  J 1-1 
r^[n - 2 m,- cos(0 - a,)] + 

" .=1 

2 Y 
-r^ ^ yl + mj_i - 2mj_i cos(^ — «j-i) * 

l<j<k<n 

\ / l  +  m l _ i  -  2 m f c _ i  c o s { 9  -  a k - i ) .  

Since we can put an arbitrarily small disc around point A\, the values of rui can 

be made arbitrarily large. At the limits as m,- oo V z, the function g{9) can be 

approximated by 

g ( 6 )  —  - r ^ [ { n  — 1) cos(0 - a,) — 
^ ,=i 
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71—1 

5 3  [ r r i k - i  c o s { 9  -  a j _ i  )  +  r r i j - i  c o s { 9  -  O k - i  ) ]  +  m , ]  
2 < j <k<n i=l 

2 
= —r^[cos(^ — ai)((ra — l)mi — mj — ma — ... - m„_i) 

+ cos(^ - a2)((n — l)m2 — mi — ma — ... — m„_i) 

+ cos(0 - a3)((n - l)m3 — mi — m2 — ... — mn-i) 

+... 

+ cos(0 — an-i)((n — l)mn_i — mi - mj - ... - m„_2) 
71—1 

+ ^m,]. (2.8) 
1=1 

In order to find the maximum value of g { 6 )  (and therefore the maximum differ­

ence between f{Ai) and f{Q)) with respect to 9, it is necessary to find the first and 

second derivatives of g{9). Equating g (9) to zero, we obtain 

Here, 

and, 

tan(g) = |2-. (2.9) 
r>2 

Bi = sinai((n — l)mi — m2 — ma - ... - m^-i) 

+ sin o(2{{ti — l)m2 — mi — ms — ... — rrin-i) 

+... 

+ sinan_i((n - l)m„_i — mi — m2 — ... - mn-2) 

B 2  —  cosofi((7i — l)mi — mg — mg — ... — m^—1) 

+ cos a2((" - l)m2 - mi - ma - ... — m„_i) 

+... 

+ cosa„_i((n - l)m„_i — mi — mg - ... - m„_2). 
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There are two possible solutions for 9 ,  therefore, to find the correct solution we 

take the second derivative of g{9) with respect to 9 and obtain 

2 
g  { 9 )  -  -r^[cos(0 - ai)(-(n - l)mi + m2 + ma + ...+ m„_i) 

+ COs(9 — Q!2)("~(w — l)m2 + TTlx + 7713 + • • • + Hln-l) 

+ cos(5 - a3)(-(n — l)m3 + mi + m2 + ... + m„_i) 

+... 

+ cos(^ — (n — l)mn-i + mi + mg + ... + m^-g)]. (2.10) 

We know that for g "  { 9 )  < 0 we can find a maximum. Therefore, we choose 9  

such that g"{9) < 0. Both the sin0 and cos 9 are necessary to uniquely specify 9. 

Using (2.9) and the value of 9 for which g"(9) < 0, we obtain 

sin0 = ^ 
D  

and 

COS 0 = — 
D  

where, 

B  = (2.11) 

In testing for a maximum we obtain g  " { 9 )  = Since B  is always greater 

than zero (except for trivial cases), g " { 9 )  <  0. This concludes the proof. Now we 

proceed to prove Proposition 2 in the next two sections. 
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2.1 Proof for General Cases (i.e., when B ̂  0) 

Proof: 

Given n data points Ai, ̂ 2,..., we can define a coordinate system with 

its origin at any one of the points and then express the other data points in polar 

coordinates with respect to this origin. Let Ai be the origin. Then from Lemma 1, we 

can find a point Q on the boundary of an arbitrarily small disc that surrounds point 

Ai, such that the g{9) will be a maximum. If we choose the cutting plane such that 

its angle in the x, y plane with respect to i4i, is | radians from 0 (see Figure 2.1), then 

by  quas i convex i t y  a t  x  o f  de f i n i t i on  3 .5 .13  i n  Baza raa  [11 ]  we  a r e  ab l e  t o  show / ( z ,  y )  

at Ai is not quasiconvex on the cutting plane by showing that a local maximum exists 

on the cutting plane. This can be shown by using the difference between f{Ai) and 

f{x,y) where {x,y) is both in the cutting plane and in the neighborhood of Ai (i.e., 

g{0)). Since the angle of the cutting plane deviates from 0 by | radians, we find 

the difference between f{Ai) and f{x,y) by finding values of the function g{6) with 

B equal to the cutting angle (i.e., ^ — f ) and tt plus the cutting angle (i.e., 9 + |). 

If both function values are greater than zero, then f{Ai) is greater than f{Q') and 

f{Q"). Here Q' has polar coordinate of {r,0 — and Q" has polar coordinate of 

(r, 0 + ^). The two points are both on the cutting plane and in the neighborhood of 

Ai (see Figure 2.1). This means point Ai is a local maximum on the cutting plane. 

Let /?i and ^2 be the angles for the cutting plane (see Figure 2.1). Substituting 

/3i = 0 — ^ and ^2 = 0+^ into (2.8), we obtain 

j(ft) = (2.12) 
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and 

^(/?2) =-r^ ^ m,'. (2.13) 

Both g{P\) and g{P2) > 0. This indicates that if we use a plane y = tan(y9i)a: 

to cut through the three-dimensional graph defined for /(z, y), then on the cutting 

plane, the point A\ will be local maximum point. Therefore, on the cutting plane, 

/(x, y) is not quasiconvex at the origin point. This concludes the proof for general 

cases. 

2.2 Proof for Trivial Cases (i.e., when B = 0) 

Proof: 

From (2.11) we know when B = 0, it implies that B \  and B 2  = 0. In order 

to equate g {9) to zero, tan(^) must be zero, +00, or —00 based on (2.9). As a result 

of that, the possible solutions for 9 are 0, or or tt, or |7r. We can show that (2.12) 

and (2.13) are true for the cases of ^ = 0, and and tt, and 9 = |7r. By the argument 

in section 2.1, we conclude that, on the cutting plane, f{x,y) is not quasiconvex at 

the origin point. This concludes the proof for trivial cases. 

Therefore, as m,- > 0 for at least one value of i  (i.e., at least one data point 

is different from the others), then both g{^i) and g{/32) > 0. This indicates that 

if we use a plane y — taxi{^\)x to cut through the three-dimensional graph defined 

for f{x, y), then on the cutting plane, the point Ai will be a local maximum point. 

Therefore, on the cutting plane, f(x, y) is not quasiconvex at the origin point. This 

conclude the proof of Proposition 2. 

One interesting feature in the proof is worth noting. Regardless of the arrange­

ment of the data points, the magnitude of slope at the origin point on the cutting 
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plane is always ^ 1]"=/ Ri. 

2.3 Illustration 

Given ten data points in Table 2.1, which are depicted in Figure 2.2, we want 

to i l l u strate that the function defined by (1.3) is not quasiconvex at data point AjI-

0.849468,-0.617175). The three-dimensional graph of —f{x,y) vs. x and y and point 

Ay are shown in Figure 2.3. First, we convert all the Cartesian coordinates into polar 

coordinates with the origin at data point Ay. For these data points mentioned above, 

we obtain Ri and a, V z = 1,2,... ,9 as shown in Table 2.2. Here A, is the distance 

from point Ay to point /I, for * = 1,...,6 and the distance from point Ay to point 

Ai+i for i = 7,8,9. The a,- is the corresponding polar angle for Ri with respect to 

point Ay. Using (2.9), we can get 0 = 0.628319. 

Using a perpendicular plane through the line y  = tan(2.19911 )s to cut through 

the three-dimensional surface, a cutting plane as shown in Figures 2.4, 2.5, and 2.6 

is obtained. In Figure 2.4 we show the relationship between the data points and the 

cu t t i ng  p l ane .  I n  F igu r e  2 .5  we  show t he  r e l a t i onsh ip  be tween  t he  con tou r  o f  f { x , y )  

and the cutting plane. Note that the y' axis in Figures 2.4 and 2.6 are identical 

and is the intersection between the cutting plane and the x,y plane. The z axis in 

Figure 2.6 represents the function value of f{x,y) with respect to the y' axis. The 

intersection between the axes y' and z is the point Ay. The magnitude of the slope 

on both sides of the point Ay is 2.65178, which is equal to | Ri. 
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Table 2.1: Cartesian Coordinates of Ten Points. 

Point X y 
A i  1.05 0 
A 2  0.849468 0.617175 
A 3  0.324468 0.998609 
A 4  -0.324468 0.998609 
A s  -0.849468 0.617175 
A e  -1.05 0 
A T  -0.849468 -0.617175 
A s  -0.324468 -0.998609 
A q  0.324468 -0.998609 

v4io 0.849468 -0.617175 

Table 2.2: Transformed Polar Coordinates of Nine 
Points With the Origin at Data Point A7. 

n R n  «n (in radians) 
1 1.99722 0.314159 
2 2.1 0.628319 
3 1.99722 0.942478 
4 1.23435 1.25664 
5 1.23435 1.5708 
6 0.648936 1.88496 
7 0.648936 5.65487 
8 1.23435 5.96903 
9 1.69894 6.28319 
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Figure 2.3: Three-Dimensional Plot of Ten Data Points and Point Ar. 
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Figure 2.5: A Relationship Between the Contour of f { x , y )  and its Cutting Plane 
at the Point A7. 
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CHAPTER 3. MEASUREMENT OF A CYLINDRICAL FEATURE 

Consider a hole (created through some manufacturing process) that is fairly 

circular. Initial measurements are used to give an estimate (O) of the center and the 

diameter [8]. We assume the hole has satisfied the specification of the size tolerance 

before we measure the departure from circularity. Using a discrete measurement 

device (such as a CMM), we can obtain a set of observed data points (using polar 

coordinates) that are separated by a constant angle 0 and have a distance 1 + e,- from 

0. Here we assume an ideal measuring device such that no error is introduced during 

measurement. In the case of n points, Û = ̂ , as shown in Figure 3.1. Note that in 

Figure 3.1 the coordinates of data points are expressed in polar coordinates. 

Using this arrangement of data points, we can simplify the problem of finding 

a least squares center. Thus, the condition that the set of observed data points be 

separated by a constant ^ is a necessary condition to determine the fundamental 

criteria for one global minimum. 

Without loss of generality, we arbitrarily indicate that the radius of the inner 

circle is 1 as shown in Figure 3.1. This inner radius can be no smaller than the radius 

of the hole when the hole is at its maximum material condition (MMC)[17]. The 

width of the annulus is defined as k. 

To find a solution for (1.3), we narrow the search to a bounded area where 
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the center should be located. We present an approximation method using Taylor's 

theorem to show that if « is small enough, then there exists one and only one circle 

(whose center lies in the bounded area) which best fits the observed data points. 

Conversely, if « is too large, multiple solutions exist. Typical values for « from the 

ISO standard [17] show that regardless of hole diameter, k is almost always less than 

0.05 for any design specification. Therefore, we limit our derivation to sets of points 

that satisfy the criterion of k < 0.05. 

3.1 Search Region 

The zth point in a data set of n points has Cartesian coordinate of (z,, y,) and 

polar coordinate of (1 + e,-, (i — 1)^), where 0 < e, < « and « < 0.05. Here e, is 

the distance from point to the inner circle of the annulus. Let D be a disc 

with center of (0,0) and radius of 1, and I n t ( D )  be the interior of D .  Thus, in our 

particular case, we can rephrase the least squares circle fitting problem in (1.3) as 

the global minimum searching problem as follows: 

Minimize f{x,y) = ^ ~ + iVi - v)^-

+ (3.1) 
" i=i / 

subject to Xi = (1 + e,) cos((i — 1)^), 
yi = (1+ e,)sin((i - 1)^), and 
( x , y )  6  I n t ( D ) .  

The reason we restricted our search region to be in I n t ( D )  is as follows. When 

a cylindrical part satisfies the size tolerance specification, the profile of the surface of 
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the cylindrical part should be confined to the annulus of Figure 3.1 after we normalize 

the profile of the surface by transforming the minimum radius of the size specification 

to 1. Let r< be the distance from point Ai to the origin of the coordinate system and 

''mm be the minimum radius of the size specification. Then we obtain a normalized 

polar coordinate of A,- with new radius of Ai of 1 + c,-. Here £,• is defined as follows 

^m»n 
= r • • 

'mm 

The center of the best fitted circle for a given set of discrete data points from the 

su r f ace  p ro f i l e  shou ld  be  i n  t he  i n t e r i o r  r eg ion ,  I n t { D ) .  
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0(0,0) 

Figure 3.1: Layout of n  Data Points in an Annulus. 
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CHAPTER 4. POSSIBLE REGION OF THE CENTER OF BEST 

FITTED CIRCLE 

Searching for a possible region of the center of best fitted circle can be divided 

into two parts. Let 0'(xc>î/c) be the center of the best fitted circle. First, we search 

for a conservative region of the center based on the fact that 0'(xc, Pc) will be fairly 

close to point 0(0,0) in Figure 4.1 when « is small. By definition in (3.1), (xc,Pc) is 

a global minimum of f(x, y), therefore, we can find a square conservative region, i.e., 

G„, for {xc, Dc) by using an inequality constraint, f{x, y) < /(0,0). (j„ is conservative 

because we have chosen a point 0(0,0) in close proximity to 0'(xci, î/c) as a basis to 

c ons t ruc t  t h e  r eg ion  o f  0 ' { x c , y c ) .  

Given the difficulty of solving the first order necessary conditions (FONCs) of 

min imization [18] for /(x, y), we use a Taylor approximation, /(x, y), for f{x, y). The 

accuracy of this approximation is limited to a square region, A*^ centered at (0,0) 

w i th  w id th  2K. We can  show tha t  bo th  G n  i s  much  l a rge r  t ha n  A *  and  A "  C G n  

when n > 4. Therefore, we need to refine (j„ so that it will be contained in A*. 

In the second step we accomplish this using an iterative algorithm. In this 

method ,  we  apply  the  FONCs of  f { x ,  y )  to  to  ob ta in  a  re f ined  reg ion  of  0 ' (xc ,  y c ) -

We continue this process until the boundary of the refined region of 0'{xc, yc) has 

satisfied some convergence criteria. The final refined region of 0'{xc,yc) is (?*. We 
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can show that if n is a multiple of 4 and it is limited to 4 < n < 200, then 

0'{xc,yc) e G\ and 

G; C A*. 

The size of G* depends on n. 

4.1 Determination of Gn 

The determination of Gn is divided into two parts. First we find a region, say 

GJJ, which satisfies the constraint, f{x,y) < /(0,0). The size of G'^ depends on e, V 

i. Second, we find the largest circumscribed square region of i.e., G„, to simplify 

the search of the conservative region for the center 0'{xc.,yc)- We show that G» is 

independent of e,- V z. 

4.1.1 Determination of G'^ 

Let us consider the case of finding the center for a set of n  points where n > 

4. The observed points have polar coordinates of (1 + ei,{i — 1)^) and Cartesian 

coordinates of (a;,,y,) (see Figure 4.1). The distance O'Ai can be represented as 

1 + c,• + fi, where Si can be regarded as the difference between O'Ai and OAi as 0' 

deviates from O (see Figure 4.2). Therefore, from (3.1) the value of f{x^y) at (xcj/c) 

becomes 

f { x c y  V c )  = ^ (l + €< + — (1 + ê + 5)j 
1=1 

= E ((A - ()' + 2(6, - ê)(f, - S )  +  ( S i  -  5)2) (4.1) 
1=1 
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where ë = e, and S  = By definition in (3.1) we know that 

(zc, V c )  is a global minimum of /(x, y ) ,  therefore we obtain 

f i ^ c V c )  <  /(0,0). 

Substituting (4.1) into (4.2) and simplifying, we obtain 

è(2(c. -ë)(6f-«) + («,-5)2) < 0. 
*=1 

According to Cauchy's inequality[12], we have the relationship 

1 
E ( = . s  E ( £ i - ? ) ( < ( - < ) .  
fsl t=l 1=1 

Substituting the left side of (4.4) into (4.3) we obtain 

-2 

1 1=1 t=i 1=1 

Rearranging the terms in (4.5), we obtain 

£ 2, 
1=1 1=1 t=l 

Squaring both sides of (4.6) and simplifying give 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 
1=1 1=1 

We observe from (4.7) that the sample variance of S is at most 4 times the sample 

variance of c. is given by the minimum of S-s, which we define as S». If we change 

our frame of reference by looking at O'A,- from Ai, we would define a disc, say D, , 

with radius of 1 + e,- + f*. Let Int(Di) be the interior of Z?,'. In this way, we can 

construct G'^ by finding the intersection of the Int{Di) V î as shown in Figure 4.3. 

We claim that 0'{xc,yc) has to be in G'^. The argument is as follows. 
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4.1.1.1 0 ' { x c , y c )  is in G ' ^  Suppose that { x c , y c )  falls outside G ' „ ,  then { x c , y c )  

has to fall into one of the Int(Di), say Int{D{). By definition the distance between 

Ai and 0'(xc,yc)> which is O'/l/, is 1 + ci + Si. Since 0'{xc,yc) falls into disc D;, thus 

we know that O'Ai is less than the radius of Di, which is \ + ei + 6^.. Thus we obtain 

O'Ai < 1 + c/ + f*, 

1 + Cj + < 1 + + ^«5 

4=#- Si < f*. (4.8) 

We observe from (4.8) that it contradicts the fact that 6. is the minimum of S^s. 

Thus we conclude that 0'(xc,yc) has to be in 

4.1.1.2 Determination of 6. In order to find 6$, we rely on the following 

facts. 

1. Region condition in (4.7). 

2. When n > 4, 2JL, 5,- > 0 if (xc,yc) ^ (0,0) (see Appendix A). 

3. When n > 4, if (xc,yc) (0,0), then at least one of Sjs < 0 (see Appendix B). 

4. When (zc, yc) = (0,0), then 6, = 0 V %. 

After relabeling V i, we obtain a set of new labels AJs such that An is the 

minimum of A< V z. It is clear that 6* can be obtained by solving the following 

nonlinear programming problem. 

Minimize An 
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subject to 4Er=i(c.' - ê)2 > E?=i(Ai - A)\ 
E?=i A, > 0. 
at least one of AJs < 0. 

This minimum deviation, i.e., f., defines G'^ shown in Figure 4.3 as the bounded 

region not contained in Int{Di) V i. 

We can show that the global minimum of A„ occurs, i.e., A„ = 5», when the 

arrangement of A{s is given in Figure 4.4. In this special arrangement E?=i A,- = 0, 

and Ai = A2 = ... = A„_i = —where An < 0 (see Appendix C). Therefore, 

in this special arrangement 

= ^(A, - 3)^ 
i=l ,=1 

= ZA? 
«•=1 

= A; + (n-l)( -
n — 1 

n 
-A! 

n — 1 

Substituting (4.9) into (4.7) we obtain 

n  

n - \  

" 62. (4.9) 

^^2 < 4^(6,-^)' 

1=1 

==> -

We can show that (see Appendix D) 

Zk -4:. (4.10) 
^ «=1 

(4.11) 
t=i 
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Substituting (4.11) into (4.10), we obtain 

^ —y/n — 1/c. (4.12) 

From Figure 4.3, it is clear that the size of G'^ is dependent on c, V i, and 6.. 

4.1.2 Derive G„ from G'^ 

We can easily show that with e,-, V i and 6, as variables, the largest G'^ occurs 

when e,' = 0 V Î and 8 »  = — K y / n  — 1 as shown in Figure 4.5 (see Appendix E). 

To simplify the discussion, we define the circumscribed square for G'^ in Fig­

ure 4.5 as Gn- The width of the Gn is 2sn (see Figure 4.6). When n is a multiple 

of 4, Sn is the x coordinate of the intersection of two circles with centers of polar 

coordinates of (1,0) and (1, ^) and common radius of 1 — Ky/n — 1. i.e., 

s„ = {a; : (x - 1)^ + = (1 - n y / n  -  1)%, 

(a: — cos + {y ~ sin ^)^ = (1 — K y / n  —  1)^, and a: < 1} 

1 - ̂ 1 - - 1 - (n - 1)«2) 

2-2 cos ^ 

sinS ^ 

When n > 4 and n is not a multiple of 4, Sn is y/ x ^  + where (x, y )  is the Cartesian 

coordinate of the intersection of two circles with centers of polar coordinates of (1,0) 

and (1, ^) and common radius of 1 — y/n — 1/c. i.e., 

-Sn = {yxM^ : (x - 1)^+ 2/''= (1 - X/TI^TK)^, 

(x - cos ^)^ + {y - sin = (1 - y/n — 1k)^, and x < 1}. 

Assigning a number to n and k , we are able to use Maple [24] to solve for s„ numer­

ically. Gn in Figure 4.6 contains the center 0'(xc, j/c) regardless of the values of e, V 
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4.2 Iterative Procedure for Finding G*. 

We can obtain a smaller possible region, which is closer to 0(0,0), of the center 

0'{xc^ Vc) by calculating a new boundary of the center 0'{xct j/c) based on putting 

constraints, i.e., the FONCs of f{x,y), to the boundary of Gn- We then use this 

new boundary as an input to the next iteration. We continue this process until the 

boundary of the center 0'{xe,yc) has satisfied some convergence criteria. Let be 

the refined region after applying the FONCs of f{x,y) to G*~^. Note that G° equals 

Gn. We define the final refined region as G*. In this way we can obtain a smaller G* 

by contracting G„ in Figure 4.6 towards point 0(0,0). 

4.2.1 Determination of G \  

We obtain G \  by finding boundaries for x  and y .  Taking the first partial deriva­

tives of f{x,y) with respect to x and y, we obtain 

=  2 ^  ̂ y ( z  -  a , ) 2  +  { y -  y i Y  -  +  ( y  -  *  

( ) (4.13) 
\ (̂a: -  z,)2 +  ( y -  y i f  ^  i=i \ l { x - X j Y  +  { y ~ y j f )  

and 

-*<)' + iy-ViY-^è\/(®-+ {y-y,)^ * 

( , '-t-, V (4.14) 
\X x Y  + (y - y i Y  ^  i=i \ l { x - x j Y  +  { y - y j Y l  

In order to satisfy the FONCs of f{x,y), we equate (4.13) and (4.14) to zero. 
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Simplifying, we obtain 

"(t^ù = + / J'J (4.15) 
t=i «=1 i=i Y Af + -Bf 

and 

H Ê B i )  =  +  / / ' , ) •  ( 4 ' « )  
1=1 1=1 1=1 Y i4,- + B f  

where A i  = z, — z, F, = y i  —  y .  Substituting r,- = y j A f  +  B f ,  cos 9 ' ^  = 

and sinOj = ; f< , we can rephrase (4.15) and (4.16) as 
v^i 

n  ̂ ^e, cos((* - 1)^) - nar^ = j ̂ ^cosgj^ (4.17) 

and 

n^Çe<sin((z-l)^)-nj/j = • (4.18) 

4.2.1.1 Upper bound of x  for We can find the upper bound of x  for 

G\ by applying (4.17) to Gn as follows. Let Lni be the lower bound of the left side 

of (4.17), so that 

Lni ^ M €i cos((i — 1)—) — nx^ . 

Isolating z, we obtain the upper bound 

® < •\(nYitiCoa{{i-l)—)-Lni\. (4.19) 
n  \  ,._j n / 

One way to find Lni is to find a lower bound of the right side of (4.17). A lower 

bound of the right side of (4.17) can be obtained by finding the most negative value 

for E?=iCos^,', LncO't and the largest value for E"=i Unr- Since Unr > 0 and 

Lnc9' < 0, UnrLncS' will be the lower bound of the right side of (4.17). 
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Unr is the global maximum value of TJi=\ V (z,y) € Gn and €,• V i .  Similarly, 

LncO' is the global minimum value of cos 9\ V (x, y) € Gn and e< V i. By setting 

I^ni = UnrLncB'i We Can solve for upper bound of x in (4.19) as 

1 / n n \ 

X < — I W s C| cos((i - 1) ) - UnrLnce» ] • (4.20) 
n  \  n  /  

Let t \  = stand for the largest integer not greater than Knowing n > 4, we 

can show that 

^€<008^(1—1) ^ < UnKc (4.21) 
1=1 ^ ^ / 

where 

<1+1 / 2—\ 
UnKc = « + 2« ^ cos ((i - 1)—). (4.22) 

1=2 \ ^ ^ 

Substituting (4.21) into (4.20), we obtain an upper bound of x  of Gn, say as 

X < —^{nUnKc — UnrLncS') 

OX X < XL*. (4.23) 

4.2.1.2 Lower bound of x for G|̂  The lower bound of x can be determined 

in a similar manner. Let Uni be the upper bound of the left side of (4.17), so that 

n e, cos((i - 1)^) - < Uni. 

Again, isolating x  we obtain 

3 f » è e «cos((i-1)^)<  x .  (4.24) 
n  \  n  /  

To find Uni, we use the right side of (4.17) and find an upper bound of n, Unr, 

and an upper bound of ]C"=i cos gj, Unce'- Since Unr > 0 and Unce' > 0, UnrUnce» will 
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be the upper bound of the right side of (4.17). Here Unc9' is a global maximum value 

of COS0,'. By setting Uni = UnrUncS', we can find the lower bound for x as 

1 / n 2jr \  
— (n5^c,  cos(( î  -  1) )  -  UnrUnce> I < X. (4.25) 
n' V ,=i " / 

Applying the similar procedure of finding the upper bound of c,- cos ^(i — 1)^) 

as shown in (4.21), we can find its lower bound as follows: 

^e, cos r(i — 1)—^ > Lnnc (4.26) 

where 

"-'I / Ott \ 
LnKC = K cos ((% - 1)—). (4.27) 

t=£,+2 \ / 

Substituting (4.26) into (4.25), we obtain a lower bound of x of say as 

follows: 

—ô()l^nMC — UnrUncB') < ® n2 

or XI^, < X. (4.28) 

4.2.1.3 Relationship between and If n > 4, n is even and (x,j/) G 

Gn where G„ C Int{D), then we can show that (see Appendices F and G) 

and 

Thus (4.28) becomes 

Lnc0' — ~Unc6' (4.29) 

Lnnc = -UnKC- (4.30) 

1 
— 2 UxiT^'ncO') 

n 

< X. (4.31) 
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Note that (i.e., is symmetric in x). 

4.2.1.4 Upper and lower bounds of y for G\ Repeating the same pro­

cess for y, we define LnaS' as the global minimum value of sin be 

the global maximum value of XIJLjsin^,', LnKs be the global minimum value of 

ELi sin ((i - 1 )^), and £/„«, be the global maximum value of c, sin ((i - 1 . 

Note that 

<3+1 / OffN 
Un^t = /c ^ sin f (% — 1)— ), and (4.32) 

1=1 ^ ^ ^ 

LrxKa = « sin('(î-l)—V (4.33) 
«=t2+2 ^ ^ 

where <2 = [|J. We can show that the upper and lower bounds of y of G^, say y^* 

and as 

y < - C^nr^naô') 
n* 

= Vi" (4.34) 

and 

Vn* ~ 2 ^nrUna0>) 
n* 

< y. (4.35) 

Applying the similar proofs in Appendices F and G, we can show that if n > 4, n is 

even, and {x, y) G Gn where C Int{D), then 

Lna9' = -Una6>, and (4.36) 

•^flKS — — (4.37) 
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Substituting (4.36) and (4.37) into (4.35), we obtain 

Vn* ~ ~ 2 (^(AiKa Unri/naO') 
n* 

<  y .  (4.38) 

Note that y^* = (i.e., G}^ is symmetric in y). 

4.2.1.5 Relationship among xj^*, and y^* We can show that if n 

is a multiple of 4 and (x,y) € Gn where Gn C Int(D), then (see Appendices H and 

I) 

Unc9' — (4.39) 

and 

Unnc — UfiKs- (4.40) 

Combining (4.29), (4.36) and (4.39), we obtain 

UncO' — Uns$i — Lncd' — (4.41 ) 

Furthermore, combining (4.30), (4.37), and (4.40), we obtain 

UnKC — UnKs — I^nKc — (4.42) 

Substituting (4.41) and (4.42) into (4.23), (4.28), (4.34), and (4.35), we find that 

= Vn = = -vL- (4.43) 

Therefore, G\ is also a square. Squareness of G\ is desirable, because it simplifies 

the determination of and The dimensions of G\ can be found by 

solving for one of the boundaries, say x^*. Thus in the case of n = 4m, the problem 

reduces to finding the global maximum of r, (i.e., Unr) and the global minimum 

of E?=i cosg! (i.e., LncO')-
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4.2.2 Determination of Unr 

We can find Unr as follows. Let gn{x, y, cj., €2,..., c„) = r,', then based on 

the definition of r,-

n 
5 ' t»(a; ,y ,c i ,C2, . . . ,Cn)  =  + -y)2.  (4.44)  

»=1 

From Propositions 3 and 4 in Appendix A, we know that given values of e, V i, r, 

is a continuous and strictly convex function of x and y with the global minimum at 

(0,0). It is clear that G„ is a nonempty compact polyhedral set in E2. Therefore, by 

Theorem 2 in Appendix J, the maximum of r, must occur at an extreme point 

of Gn (i.e., one of the four vertices in Gn)- Recall that Unr is the global maximum 

value of y„(a:,j/,ei,C2>-.., („). Therefore, we obtain that Unr corresponds to one of 

the four vertices in Gn-

We can show that the global maximum values of gn{x, y, ej, 621 • • • » Cn) is invariant 

when {x,y) is at any one of the vertices of Gn (see Appendix K). Recall that is 

one half the length of a side of G„. Thus the upper right vertex of Gn has coordinate 

of (5„,5n). Therefore without loss of generality, we we can find Unr by choosing 

(z,y) = (5„,Sn) first. Then with t\3 as variables, we can find Unr by finding the 

global maximum of gn{sn^ 3^, Ci, C21 • • •, Cn)- It is summarized as follows. 

Unr — • 1 ^n) • ^ *<} 

= MAX{Y^ ̂ J{xi - SnY + (y, - 5„)2 : e, V i.} 
1=1 

We can show that, with e\s as variables, a maximum value for gn{sn, 5„, ei, £2,..., en), 

occurs when e,- = /c V i (see Appendix L). Thus, we obtain 

Unr ~ ^1> ^2> • • • » ^n) • ^ 
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= ^^((1 + K)cosOi -  SnY + ((1 + K)sm9i -  s„)2. (4.45) 
t=l 

4.2.3 Determination of LncB> 

Now we proceed to find Lnce' as follows. Let hn{x, y, ci, eg,, e„) be E"=i cos 9\, 

then based on the definition of cos 6\ 

X ' ^ X 
^n(3'» y» ^1» ^2» • • • ? ^n) = , =• (4.46) 

,=i Y (a;, - a:)2 + (y, - yf 

Then we take the first partial derivative of hn{x, y, ci, eg,..., e„) with respect to 

X and obtain 

gfen(g,y,ei ,C2, . - . ,en)  _  A -(y,  -yf  
dx S ((®'' - + ivi -

< 0. (4.47) 

By (4.47) we know that AM(z,y,ei,e2,...,en) is a decreasing function of x given y. 

Therefore, we know that when (®, y) € G„, the global minimum of /i„(x, y, ei, eg,..., e„) 

occurs when (x, y) is located at its rightmost boundary of (7„ (in this special case, 

X = Sn and -s„ < y < s„). If we can show that given €< V i, /in(®,y,ei,C2>...,(») 

is a strictly concave function of y when x is at the maximum value of Gn, then it is 

clear that the global minimum of An(a;,y,ei,eg,...,en) occurs when (z,y) is at one 

of its extreme points (i.e.. Pi or Pg in Figure 4.6). 

In order to show that A„(a:,y,ci,eg,...,c„) is a strictly concave function of y 

when x is at its maximum value of Gn, we take the second partial derivative of 

hn{x, y, ci, eg,..., e„) with respect to y and obtain 

d^hnix,y,ei,€2,'--,^n) _ A/ _ . -(a,- - a;)^ + 2(y,- - y)^ 
0y2 ^ ((a:< - x)^ + (y, - y)2)2.s ' 
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If we can show that given d'^hn{x,y,ti,C2„.„Cn) 
â? < 0 when x = Sn and —5„ <y < Sn, then 

hn{x, y, ei, 62,. ' ', Cn) is a strictly concave function of y. 

Mathematically, it is very difficult to show this, however, by assigning a number 

to n such that 4 < n < 200, and n is a multiple of 4, we can use optimization software, 

such as simulated annealing [22] [23], to find the global maximum of 

numerically. If the global maximum of < 0, then we conclude that 

tn) ^ Q Indeed, if 4 < n < 200 and n is a multiple of 4, we can 

show that < 0 V a; = 5„, —s„ < y < Sn, and e, V i numerically by 

simulated annealing. Therefore, by the previous argument, the global minimum of 

A„(a;,j/,ei,e2,...,Cn) occurs when the {x,y) is at point Pi or Pg (see Figure 4.6). 

Recall that L„cei is a global minimum value of A„(a;, y, ei, 6%,..., Cn). Therefore, we 

obtain that L„cô' occurs when (x,y) is at point Pi or Pg. 

We can show that when (x, y) € G„ where Gn C Int{D), and n is a multiple of 4, 

the global minimum value of hn{x, y, ci, 62,..., Cn) with (z, y) being of the Cartesian 

coordinates of Pi(sn, 5n) is equal to the global minimum value of /i„(x, y, 61,62,..., e„) 

with (z, y) being of the Cartesian coordinates of P2(stn —-Sn) (see Appendix M). Thus, 

without loss of generality, we arbitrarily choose (z, y) to be the Cartesian coordinate 

of Pi to search Lnc$'- Note that 

n 

"Sjij ^2, • • • ) ^ti) — COS O j ,  (4.48) 

where 

cos 9 
Xi — Sn 

(4.49) 

V i. If we can find e,- such as to minimize cos O'^ V i, then by (4.48) we know that it 

minimizes hn{sn,sn, Ci, 62,..., 6„) as well. 
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4.2.3.1 Conditions of minimization of cos Using lines y — = 0 and 

z — y = 0, we divide the annulus into four areas as shown in Figure 4.7. We can show 

geometrically that, with e,- as a variable, when (x, j/) is at point Pj (5„,5n), a global 

minimum value of cos 9'^ occurs when c, satisfies one of the following conditions. 

1. If {Xx,yi) falls into region I V e,, then we choose the corresponding e, to be k. 

See Figure 4.8. The argument is as follows. 

When {xi,yi) falls into region I, it is clear that Since cos5|- is a strictly 

decreasing function of 9'i when 0 < < ^, thus we know that cos0- is smaller 

when 9[ becomes larger. We observe that for a given 0,, with e, as a variable, 9\ 

is larger as e, becomes larger. Therefore, we obtain that cos 9\ is smaller when 

e,- becomes larger. Thus, when (ar,-, j/,) falls into region I, in order to obtain the 

minimum value of cos , we choose e,- = «. 

2. If (x,-, yi) falls into region II or III or IV V c,, then we choose the corresponding e, 

to be 0 or K or 0 correspondingly. See Figure 4.9, 4.10 and 4.11. The argument 

is similar to condition 1. 

3. If (xt,yi) falls into both regions I & IV V Ci, then we choose the corresponding 

cos 9\ to be the minimum of ( , (i+>c)cosgi-Jn ^ cosg|-5|, I. 
I \/((1+K) Co8 0,-Sn)'+((1+K) »in0,-«n)^ y/(cos6i-Sn+{sin-snJ 

See Figure 4.12. The argument is as follows. 

By condition 1, we can show that if (x,-, y,) falls into region I for some e;, say 

z < €i < K, then, in order to obtain the minimum value of cos^j, we choose 

e< = K. Here z is the distance from the point SP, which is the intersection 

point of lines y = tanô< x and y = Sn, to the inner circle of the annulus (see 
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Figure 4.12). i.e., 

M I N  {cos :«<€<<«} 

(1 + K) COS Oj — Sn 
(4.50) 

\/((l + «)cos^,- - 5„)2 + ((1 + «)sin0j -Sn)2 

By condition 2, we can show that if (a;,, y,) falls into region IV for some e,, say 

0 < < z, then the minimum value of cos^j occurs when c< = 0. i.e., 

M I N  { c o s 0 ' i : O < € i < z }  =  c o s g .  - ^ n  ( 4 . 5 1 )  
y(cosg, -3^)2 +(sing,-a»)2 

Thus by (4.50) and (4.51), we obtain 

M IN {cos g: : 0 < e, < «} = M IN ' {: ̂(cosélj - Sn)2 + (sinôj - s„)2 ' 

-, (1 + 4 CO.»,-.. 1 (^52, 
y((l + /c)cosgj - Sn)2 + ((1 + «)sin^i - 5„)2 J 

4. If (xi, yi) falls into both regions II & III V e,-, then we choose the corresponding 

cos0{ to be -1. See Figure 4.13. The argument is similar to condition 3. 

5. If (a:,', yi) falls into the boundaries between regions I & II or between regions 

III & IVV 6„ then the choice of 6, does not make any difference to cos^^. i.e., 

when (x<,j/i) falls into the boundary between regions I &: II, (See Figure 4.14) 

cos 6\ = cos di 

TT 
= COS — 

4 

— ^ (4.53) 

and when (a;,,y() falls into the boundary between regions III & IV, (See Fig­

ure 4.15) 

COS O'i = cos 9i 
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5 
cos -TT 

4 

Ve, .  (4.54) 

The conditions above are coded in subroutine LCTHETA (5n,N, Z/„CÔ') (see Ap­

pendix N) to find the L„o9' given Sn and n. 

4.2.4 Iterative algorithm of searching the upper bound of x of G* 

Let xj,* be the upper bound of x of and x* be the upper bound of a: of G*. 

Since « < 0.05, we choose K to be 0.05 in the iterative algorithm to cover all situations 

of K. The iterative algorithm, which is to find a:* for 4 < n < 200 and n is a multiple 

of 4, is summarized as follows: 

« = 0.05; 

= (i - :)f ; 

for n from 4 by 4 to 200 do 

Unr = E?=l >/((! + K) COsOi - 5„)2 + ((1 + K)sm0i - 5n)2; 

Un.c = K + 2KZU'cOS ( ( i - l ) f ) ;  

Call LCTHETA(a„,n,W); 

~ UnrJ-'ncO'^'t 

test = ^:^100; 

3 = 1; 

while test > 0.0001 do 
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Sn = K*; 

i = i  +  i ;  

f^nr = E?=l ^((1 + K)cOS0i - Sn)^ + ((1 + «) sin - 5„)2; 

Call LCTHETA(sn,n,L„efl'); 

~ ^(^^tiKc ^nr-^ncO')i 

test = 100; 

enddo; 

< = 
print r;; 

enddo; 

Numerically we can show that of G* can be expressed as x* = a(n)K where 

o(n) is a function of n and a(n) < 1 (see Appendix 0). We also can show that 

9 h„{x,y^eue3,...,e„) ^ Q fQp a(n)« < X < —X < y < X, and €,• V z, numeri­

cally by simulated annealing (see Appendix P). This ensures us to use subroutine 

LCTHETA(5„, n, Lnc6') in the iterative algorithm validly when we use the value x!^~^^* 

as the input to s„ to find the value Lnce', which, in turn, is used to find x'*. 

Note that the program stops when the difference between and x*^ is less 

than 0.000001 K. By (4.43) we have shown that is a square. Applying the same 

manner to search G'„, we obtain that G'„ is a square as well. Therefore we obtain 

that G* is a square and |a;| < a(n)K and |j/| < a(n)/c for (x,y) 6 G*, 4 < n < 200 

and n is a multiple of 4. Recall that in section 4.1, the is such that |z| < s„ and 

ly| < -Sn. It is clear that a(n)/c < 5„ (see Appendix O). Thus, we know that G* is 

closer to (0,0) than Gn is. Recall that A* is the square region centered at 0(0,0) 
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with width of 2/c. From Appendix 0 we obtain that G* C A*. Thus we can use 

Taylor's theorem to approximate f{x,y) where {x,y) 6 G*. 
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UK 
0(0.0) 

••1 

Figure 4.1: A Possible Arrangement of n Data Points and the Center 0'( 

0(0.0) 

Figure 4.2: A Relationship Between O'Ai and 1 + e,- + Si. 
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Ain(14CMI 0W) 

0M) 
A,(we,. 8,) t+ei+â. Aill+ti, 01 ) 

'\:Wâ): 
Ai.(i+e*, 01) 

I+&.+*. 

Ai(i+ei,0i) 
An(i+eM,0M) 

1+Ew+f# 
l+er^\^l+«'. ®*) 

• .,yV • • ; : 'T i+e»+«jju\ ^'+®'' ®') 

Aw(i+%M, a-) A-Xl+A",®-) 
A.(l+C.,8.) 

Figure 4.3: The G'^. 

A. 
As 

A3 

An-r 

A, 

Figure 4.4: A Configuration for Searching 6.. 
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AIH(1, Gw) A.(l,9.) 
Am(1, 0M) 

A/i.e.) 

A.(l.0t) Ah(1| OM) 

A.(1.0|) Ai(i,e.) 

' » X .'.1 y 1 Mi.e») Aid. e.) 

A-.(i.e-) 
x-(i.e-) 

A»(l, 0») 

Figure 4.5: The Largest G'^. 

Aw(l+R.. 8w) Ai(i+e.,0i) 
^41+6-, 0M) 

AmCi+CM. Qw) 
Ai(i+ei,0i) 

AhCI+Cm, 0m) 

C." 

s • 1. *. . 

# 
a;'?#-•v.iiVvVi; 

AXi+r«.0') 

A/i+e.. 0.) 

A,(:+e..0') 

AXi+r.,0.) 

A«(i+eM, @w) A,(i+e„0,) 
Aw(l+&.,&.) 

Figure 4.6: The 
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Figure 4.7: Four Divisions of Annulus. 

y 

Figure 4.8: Illustration of in Region I Which Minimizes cos 
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y 

01 / 

Figure 4.9: Example of e,- in Region II Which Minimizes cos 

y 

Figure 4.10: Picture of e,' in Region III Which Minimizes cos 
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y 

Figure 4.11: Diagram of e,- in Region IV Which Minimizes cos 

y 

SP 

Z._ 

Figure 4.12: Instance of 6, When (a:,-, j/,) is Between Regions I k IV. 
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y 

Figure 4.13: Drawing of e,- When (a;,-,j/,) is Between Regions II h III. 

y 

Figure 4.14: Sketch of c,- When (a;.,î/i) is Between Regions I & II. 
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y 

/ Cl 

Figure 4.15: Representation of c,- When {xi,yi) is Between Regions III &: IV. 
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CHAPTER 5. GLOBAL MINIMUM OF f { x ,  y )  

The theme of this chapter is to show that there exists a unique circle within 

Int{D) to satisfy (3.1) when 4 < n < 200 and n is a multiple of 4. This can be done 

by showing that there exists a unique center (xcUc) which is both the only local 

m i n i m u m  a n d  t h e  o n l y  g l o b a l  m i n i m u m  o f  f { x , y ) .  

This chapter is divided into three parts. First, we will derive an approximation 

of f{x,y) by f{x,y) by Taylor's theorem when (x,y) E G* and show that there is 

only one point, say (xc>j/c), which satisfies the FONCs of f{x,y). Second, we will 

show that /(x, y) is a strictly convex function in G*. Third, we will show that {xc, yc) 

i s  b o t h  t h e  o n l y  l o c a l  m i n i m u m  a n d  t h e  o n l y  g l o b a l  m i n i m u m  o f  f { x , y )  f o r  { x , y )  

G Int{D). Note that {xcpc) is an approximation of the unique center {xc,yc)- The 

details are as follows. 

5.1 Taylor Approximation of f { x , y )  

In section 4.2.4 we have shown that for 4 < n < 200 and re is a multiple of 4, the 

final refined region of 0'{xc, Vc) should be confined in a region (x, y), i.e. C*, such that 

|x| < 0.05 and |j/| < 0.05. It is clear that G* C A*. Therefore we can approximate 

the function /(x, y) fairly with a linear polynomial, /(x, %/), by the Taylor's theorem. 

Indeed, we can generalize the approximation of f{x,y) as follows. 
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For the n data points case, if 0'{xc^yc) is within A*, then we can use Taylor 

theorem to approximate O'Ai by QiAi. Here QiAi is the projection of O'Ai over line 

OAi (see Figure 5.1). As a result, we can show that the general formula of f{x,y) is 

given by (see Appendix Q): 

^ f 1 \ ̂  
=  2  c.-xcos^i-ysin^i  (5.1)  

«•=1 \ " 3=1 J 
where 9i = (i — 1)^ V i. 

5.1.1 Point which satisfies FONCs 

Taking the first partial derivatives of f { x , y )  in (5.1) with respect to x  and y ,  we 

obtain 

^^^dx ~ ^ ® cos $i - y sin ^ ̂  ej){-cos g,) (5.2) 
.=1 " i=i 

and 

= 2^(c,'-a;cos0,-- j/sin^f - - ̂Cj)(-sin5,). (5.3) 
1=1 j=i 

Solving for (xc, yc) at = 0 and = 0, we get dx " ay 

. _ E"=1 Ci cos E"=1 sin^ $i - Er=i G: sin Oj EILi sin Oj cos Oj 

" EILi cos2 Oi E?=1 Sinf di - (E?=1 sin g, cos g,)' 

and 

. _ Er=i Ci sin 9i Efai cos^ Oj - ELi c, cos E"=i sin Oj cos Oj 
E"=iCos2 0. E?=isin2^. -(E?=isin^. cos0,)2 ' ^ ^ 

Applying the proof of Lemma 3 in Appendix A, we can show that when n > 4 

^ cos f^(z — 1)—] = 0, and (5.6) 
1=1 \ ^ / 

g sin ((*-1)^1 = 0. (5.7) 
1=1 \ ^ ^ 
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Thus it is clear that 

I] cos^ Oi = f ̂ ( 1 + cos 2^,)) 
t=i i=i / 

= ? + ^ECOS20,-
2 2,=i  

= ('/ (5.6)) (5.8) 

sinf 9i = 1 - cos^ Oi) 
1=1 1=1 

n 
= n — ^ cos^ 9i 

1=1 
n 

=  " - 2  

= and (5.9) 

^ sin cos = ^X^sin(2^,) 
i=l  ̂1=1 

= 0. (•.•(5.7)) (5.10) 

Substituting (5.8), (5.9), and (5.10) into (5.4) and (5.5), we acquire 

2 " 
Xc = -J^e.cos^,- (5.11) 

" .=1 

and 

Vc = -^e.sin^,-. (5.12) 
" «=1 

5.1.2 Accuracy of Approximation 

The accuracy of our approximation of /(a:, y) by /(», y) can be measured by the 

accuracy of the approximation of O'Ai by Q,vl, V i. An error function ^,(«) V i gives 
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the accuracy relative to the length of O'Ai and is specified by 

= 1 —cosa,-. (5.13) 

Here a< is the angle formed by lines O'Ai and OAi (see Figure 5.1). Thus the smaller 

the cos a,' is, the bigger the error Ei{K) will be. We can show that the global minimum 

of cos a, V 0 < c< < «, {xcHc) G A* and 0 < ô,- < 27r occurs when (see Appendix R) 

€i = 0, 

. —2K + v^2 — 4K^ 
cosffi = , 

. a 2« + y/2 — 4«^ 
sm^i = , and 

{ X c V c )  = (-«,«). 

This is illustrated in the triangle of Figure 5.2, from which we obtain the minimum 

value of cos a,-, cos a*, as 

1 + O'Ai -  2k2 
cos a = — 

2aAi 
_ 1 + « cos Oi — K sin di 

\ /{cos 0i + k)^ + (sin ûi — «)2 

= Vl - 2*3. 

Since {^, : = (z — 1)^, V e} is a subset of {ûi : 0 < ûi < 2;r}, thus we know that 

cos a,- > cos a* V z. 

Thus an upper bound of £?,•(«) V Z, B(K)* would be 

E(K)*  =  1-y/ l -  2*2.  (5 .14)  

As we would expect, (5.14) demonstrates that B(K)* is proportional to «. 
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5.2 f { x , y )  is a Strictly Convex Function in G* 

Before doing the proof, we need the following lemma, definitions and theorems. 

Lemma 1 of chapter 2 in Searle [19]; The symmetric matrix A is positive defi­
nite if and only if all its principal leading minors have positive determinants. 

Definition 3.3.5 in Bazaraa [11]: Let 5 be a nonempty set in and let / : 
S —* El. Then / is said to be twice differentiable at x E int S if there exist 
a vector V/(x), and nxn symmetric matrix H(x), called the Hessian matrix, 
and a function a: En—* E\ such that 

/(x) = /(x) + V/(x)Xx - x) + ̂ (x - x)*H(x)(x - x) + 

||x - x|po;(x; x - x) 

for each x € 5, where limx-** a(x; x — x) = 0. The function / is said to be 
twice difFerentiable on the open set S' C S \i it is twice difFerentiable at each 
point in S'. 

Theorem 14 of chapter 10 in DePree [35]: (Taylor's Theorem for TV = 2). Sup­
pose D is an open convex subset of / : D A, and Xo,Xo -|- h € D. If / 
has continuous third order partial derivatives in D, 

/(xo + h) = /(xo) -f- V/(xo) • h -f- ^ 2 Dijf{xo)hihj -K 
1=1 

DijkfiO^ihjhk, where ( € [xo.xo + h].(5.15) 
k=l j=l 1=1 

Let 

%(%.h) = (5.16) 
&=1 j=l i=l 

Note that the continuity of the partial derivatives of / implies |i?2(xo, h)| < 
M2IIhII3, where M2 is independent of h; consequently, 

iilim ^2(xo,h)/|lhf = 0. (5.17) 
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Definition 15 of chapter 10 in DePree [35]; If D is an open subset of RP  ̂ and 
f : D —* R has continuous second order partial derivatives at Xo E D, the 
Hessian of / at Xo is the nxn (symmetric) matrix 

Using the Hessian, we can write the formula in (5.15) as 

/(xo + h) = /(xo) + V/(xo) • h + ^(VV(xo)h')' • h + A,(xo, h). 

In these expressions, h' is the transpose of the row matrix h. 

Theorem 3.3.8 in Bazaraa [11]; Let 5" be a nonempty open convex set in En, and 
let f : S Et be twice difFerentiable on S. If the Hessian matrix is positive 
definite at each point in S, then / is strictly convex. 

Proof: 

1. Using (5.2) and (5.3), we take the second partial derivatives of f { x , y )  with 

respect to x and y, obtaining 

= 2i;cos'«,=n, (5,18) 
OX 

^ Q = 2 53 cos 0,-sin 0,= 0, and (5.19) 
oxoy 

= 2f;sm'«, = n. (5.20) 
dy^ tt 

We construct the Hessian matrix of f { x , y )  éis follows: 

•  d^f(x,y)  d^/(x,y)  
dxdy 

9'*}(x,y)  d^f(x,y)  
dxdy dy^ 

n 0 
O n "  
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The determinants of the principal leading minors of H are det(H[l,l]) and 

det(H). Seeing that det(H[l, 1]) = n and det(H) = with n > 0, by lemma 1 

of chapter 2 in Searle [19], we know that Hessian matrix H is positive definite. 

2. Taking the third partial derivatives of f { x , y )  with respect to x  and y ,  we have 

dx^ 

dx'^dy 

dxdy^ 

= 0, (5.21) 

= 0, (5.22) 

= 0, and (5.23) 

= 0. (5.24) 
dy^ 

By (5.21), (5.22), (5.23) and (5.24) we know that the third partial derivatives 

of f{x^y) exist and are continuous, thus by definition 3.3.5 in Bazaraa [11], 

theorem 14 of chapter 10 in DePree [35] and definition 15 of chapter 10 in 

DePree [35], we obtain that f{x,y) is twice difFerentiable. It is clear that G* is 

a nonempty open convex set. 

3. By proof statements 1 and 2 and theorem 3.3.8 in Bazaraa [11] we conclude 

that f{x,y) is strictly convex when {x,y) € G*. 

This concludes the proof. 

5.3 (zg, yc) is Both the Only Local Minimum and the Only Global 

Minimum of f { x ,  y )  

In this section we devise two steps to show that {xc,yc) in (5.11) and (5.12) is both 

the only local minimum and the only global minimum of f{x,y) for {x,y) e Int{D), 
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First, we will show that (xc,yc) is both the only local minimum and the only global 

minimum of f{x,y) in G*. Second, we will show that {x^yc) is both the only local 

minimum and the only global minimum of f{x,y) in Int{D). Now we proceed to 

proof of the first step as follows. 

5.3.1 Local Minimum and Global Minimum in G* 

First, we will show that (xc,yc) is the only local minimum of f { x , y ) .  Before 

doing the proof, we need the following theorems. 

Theorem 4.1.4 in Bazaraa [11]; Suppose that f •. En—^ Ei is twice difFerentiable 
at X. If all the first partial derivatives of / are zero at x and the Hessian matrix 
value at x is positive definite, then x is a local minimum. 

Theorem 15.40 in Faires [25]: If a function / has a local minimum at (zo, 2/o), 
then (zo, yo) is a critical point of /. Here the critical point is a point in E2 such 
that either its first partial derivatives of / are zero, or at least one of the first 
partial derivatives fail to exist. 

Proof A: 

1. Given that f { x ,  y )  is a good approximation of /(x, y) and j{x, y) is difFerentiable 

as we have shown, by theorem 15.40 in Faires [25] we know that if there is a 

local minimum of f{x, y) in G*, then the local minimum can only occur at 

critical point where its first partial derivatives of f{x,y) are zero (i.e., critical 

point which satisfies FONCs). 

2. Given [xc, yc) which satisfies the FONCs of f{x, y) as we have shown, we know 

that if there is a local minimum of f{x,y) in G*, then the local minimum can 

only occur at {xc,yc)-
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3. Given that /(x, y) is twice diiferentiable and the Hessian matrix value of /(x, y) 

at (iciî/o) is positive definite as we have shown, by theorem 4.1.4 in Bazaraa 

[11] we conclude that {xe,yc) is the only local minimum of f{x,y) in G*, which 

in turn, is the only local minimum of f{x,y) in G*. 

Second, we will show that { x ^ y c )  is the only global minimum of f { x , y )  in G*. 

Before doing the proof, we need the following theorem. 

Theorem 3.4.2 in Bazaraa [11]: Let 5" be a nonempty convex set in En, and / : 
S El. Consider the problem to minimize /(x) subject to x G S. Suppose 
that X € 5 is a local minimum solution to the problem. If / is strictly convex, 
then X is the unique global minimum solution. 

Proof B: 

1. Given that (zg, yc) is the only local minimum of f{x, y) in G*, G* is a nonempty 

convex set in Eg, and f{x, y) is strictly convex in G* as we have shown, by 

theorem 3.4.2 in Bazaraa we conclude that {xa, yc) is the only global minimum 

of f{x,y) in G%, which in turn, is the only global minimum of f(x,y) in G*. 

This concludes proof of the first step. Now we proceed to proof of the second 

step. 

5.3.2 Local Minimum and Global Minimum in Int{D) 

First, we will show that {xc,yc) is the only local minimum of f{x,y) for { x , y )  €  

Int{D). 

Proof A: 
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1. Given that f { x , y )  is continuous and difFerentiable for (x, y )  G I n t { D ) ,  no point 

outside G* satisfies the FONCs of f{x,y) as we have shown, by theorem 15.40 

in Faires [25] we know that if there is a local minimum for {x, y) Ç Int(D), then 

the local minimum occurs only at the point in G* which satisfies the FONCs. 

2. Since ( x c p c )  is the only local minimum of f { x , y )  in G*, we conclude that 

{ x c V c )  i s  t he  on ly  loca l  min imum of  f { x , y )  fo r  { x , y )  €  I n t { D ) .  

Second, we will show that { x c , y c )  is the only global minimum of f { x , y )  for 

{x,y) € Int{D). Before doing the proof, we need the following theorems. 

Theorem 15.41 in Faires [25]; If A is a bounded region of the plane and f  :  R — *  
El and / has a global minimum at (xo, yo) in R, then either {XQ, yo) is a critical 
po in t  o f  /  or  (xo ,  yo )  i s  on  t he  bounda ry  o f  R .  

Theorem 7.8 in Curtis [20]: { e x t r e m e  v a l u e  t h e o r e m )  Let (oi, 02,..., a„) be a vec­
tor of ra—tuple of real numbers. The set of all such vectors will be written as 
Vn{R). Let ^ be a nonempty bounded closed set in Ki(i2). If / is a continuous 
real-valued function defined on S, then there exists a point XQ Ç S such that 

f { X o )  >  f { X )  x e s .  

Similarly there exists a point X i  €  S  such that 

f i X x )  <  f { X )  V X € 5. 

We can combine theorem 15.41 in Faires and theorem 7.8 in Curtis to form the 

following theorem. 

Theorem 1 If T is a compact subset of the plane and f  :  T  — *  E i  and / is a 
continuous function on T, then there exists a global minimum, say (XQ, yo)i in T such 
that either (xo,yo) is a critical point of / or (xo,t/o) is on the boundary of T. 
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Proof B: 

1. Given that (?„ is the largest closed circumscribed square region centered at 

0(0,0) such that 

f { x , y )  <  /(0,0), and 

Gn  C  I n t { D ) ,  

and is the complement of Gn, we obtain 

/(0,0) </(^„). (5.25) 

If there is a global minimum, say (a;no,î/no)» in Gn, then 

f{xno,yno)<mO). (5.26) 

By (5.25) and (5.26) we find that 

f  [ X n O ,  V n o )  <  f { G n ) .  (5.27) 

By (5.27) it is clear that if there is a global minimum of f { x ,  y), then the global 

min imum wi l l  no t  be  i n  G n  ( i . e . ,  t he  g loba l  min imum of  f { x , y )  wi l l  be  in  G n ) -

2. Given that f { x , y )  is a continuous function and Gn is a compact subset of the 

p lane ,  by  Theorem 1  we  know tha t  t he re  ex i s t s  a  g loba l  min imum of  f { x , y )  

and the global minimum occurs in Gn- The global minimum is either a critical 

point of f{x, y) or is on the boundary of C?„. 

3. Let B d r y { G n )  be the boundary of G„. We can show that given n > 4 (see 

Appendix S) 

f { B d r y { G n ) )  >  /(0,0). 
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We know that ( x c V c )  is the only global minimum of f { x , y )  in G * ,  and 

G: C C?„, (5.28) 

therefore, the global minimum cannot occur on the boundary of Gn- Thus the 

global minimum of f{x, y) occurs only at the critical points in the interior of 

t he  Gn  ( i . e . ,  I n t { G n ) ) .  

4. Given that f { x ^ y )  is difFerentiable in /n<((?n), no point outside G* satisfies the 

FONCs as we have shown. We know that the global minimum occurs only at 

the critical point of f{x,y) in G* which satisfies the FONCs. Since (xc, j/c) is 

the only global minimum of f{x,y) in G*, thus we conclude that (xc,yc) is the 

on ly  g loba l  min imum of  f { x ,  y )  fo r  (x ,  y )  €  I n t { D ) .  

This concludes proof of the second step. 
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Figure 5.1: An approximation of O'Ai by QiA,. 

Figure 5.2: The arrangement of E{K)*. 
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CHAPTER 6. RESTRICTIONS OF THE CRITERIA 

Our criteria cover up to 200 data points with n of a multiple of 4. We can show 

that > y/n — Ifc (see Appendix T). So when n > 200 with n of a multiple of 4 

(i.e., n = 204,208,212,..., etc.) and K = 0.05, we obtain that 

s„ > Y/204 - IK 

= 0.71239, 

which is greater than ^ = 0.70711. As a result, G„ will not be completely in the 

Int{D) as shown in Figure 6.1. As a result, the function gn(x,y,ei,e2,... ,en} = 

\J{x — XiY -\-{y — ViY (see Appendix A) is no longer twice difFerentiable in Gn 

and therefore we can no longer guarantee that gn{x, j/, ei, C2,..., Cn) is strictly convex 

in Gn. Due derivation of G* becomes invalid for this case. Thus, when n > 200 and 

n is a multiple of 4, it remains to be seen that our criteria can still provide a unique 

circle for a set of n data points. 

The other restriction is that n is a multiple of 4. This restriction is due to the 

fact that we want to simplify the iterative algorithm to search for the a:* of G*. When 

n > 4 and n is not a multiple of 4, it remains to be seen that can be contracted 

to be within A", which in turn, leads to the result of a unique circle. 
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A . ( i . e . )  

A ,  ( 1 . 9 ,  )  

li* 
A,(1.0) 

A . d . e . )  

Figure 6.1: The Gn When n > 200 and n is a Multiple of 4. 
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CHAPTER 7. APPLICATION 

This methodology is applied to a worn-out bushing to measure its departure from 

circularity, which indicates the deformation of the bushing. The bushing (which was 

worn out by the accelerated life testing, i.e., vibrating test) is a prototype of the 

bushing used in the spring trip standard of John Deere & Company. The spring trip 

standard is sketched in Figure 7.1. The spring trip standard is mounted on a field 

cultivator to till the land. When the tip of the spring trip standard dig into the 

ground, it exerts pressure on the bushing (which connecting standard and bracket) 

resulting worn out on the bushing. The vibration, which was exerted on the bushing 

in the vibrating test, was to simulate the effect of the pressure on the bushing of 

the spring trip standard under plowing. The vibrating test was done at the test 

laboratory in the John Deere Se Company in Ankeny, Iowa. The purpose of study 

of the bushing is to investigate the relationship between the functionality and the 

design specification of the bushing. 

The worn-out bushing is measured by a Brown &: Sharpe CMM [33] [34] in 

Carver Laboratory of Black Engineering in the Iowa State University. The bush­

ing was mounted on the smaller hole of an aluminum block by a bolt. Then the 

aluminum block was mounted on the measurement table of CMM by the clamping 

wedge, bolt and nut. The set up of the measurement is shown in Figure 7.2. The 



www.manaraa.com

75 

design specification of the bushing and aluminum block are shown in Figures 7.3 and 

7.4. The size of probe of CMM, which we used to take measurement, is of 5.9 mm in 

diameter. 

Using CMM we take the measurement on the outer surface of the worn-out 

bushing to measure its departure from circularity. Four data points on the outer 

surface of the worn-out bushing had been preselected to determine the center of the 

bushing with respect to its outer surface. Then we choose that center as the origin of 

our new coordinate system. The z coordinate was set zero at the top surface of the 

aluminum block (see Figure 7.2). Afterwards, We took three levels of measurements 

and in each level we took 40 equally spacing angle-wise data points with respect to 

the origin of our new coordinate system. The data is shown in Appendix U. For each 

level, we project the data points into x, y plane, resulting Figures 7.5, 7.6 and 7.7. 

We first want to know that whether this three sets of data (a set in a level) satisfy 

our criteria of having a unique global minimum of /(a;, y). We calculate the distances 

from (0,0) to the data points to find out its minimum, say c?mm) and maximum, say 

dmax- Next, we calculated the converted ratio k as follows 

*  dmax dmin / t  i  \  
K — —————, (7.1 j 

"min 

If « < 0.05, then the data sets satisfy our criteria. The results of d^in, d^axi and k 

are summarized in Table 7.1 as follows. 

All the k  in each level is less than 0.05. Thus the data points satisfy our criteria. 

Since we have shown that when the data points satisfy the criteria, there exists only 

one both local minimum and global minimum point of f{x,y) in Int{D). Thus we can 

use common optimization software to search for the local minimum of f{x,y). When 

we find the local minimum, we find its global minimum as well. An optimization 
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Table 7.1: The Results of rfn,a®> and k. 

level dmin dmax k 

1 .3614130393 .3701276792 .02411268812 
2 .3653746431 .3668119394 .00393376039 
3 .3631390782 .3721407966 .02478862491 

software, MATLAB [10], was used to find the local minima of f { x , y )  for the three 

sets of data points. The results are shown in Table 7.2 as follows. 

Table 7.2: The Results of Local Minima of f { x , y )  in Each Level. 

level local minimum 
1 
2 
3 

(-0.000456330499, -0.000719643735) 
( 0.000312615154, 0.000158162625) 
( 0.000231168531, 0.000187560897) 

After that, for each level, we calculate the distances from the local minimum 

(which is also the global minimum) to the data points to find out its minimum, say 

and maximum, say Using the difference between the and the 

we obtain a measure of departure from circularity. Let 

dcir = <^moa! ~ 

The results of and d^r for each level are shown in Table 7.3 as follows. 

Table 7.3: The Results of d'^^x aiid rfci, 

level C. ^max dcir 
1 .3618565821 .3704519174 .0085953353 
2 .3654141128 .3665951940 .0011810812 
3 .3634365693 .3718703352 .0084337659 

The results of match our observation on the worn-out bushing, i.e., two ends 
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of the bushing was worn-out more severely than the middle part of the bushing. This 

concludes the illustration of our methodology to the worn-out bushing. 
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Figure 7.1: The Spring Trip Standard. 
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Figure 7.2: The Set Up of the Measurement. 
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Figure 7.3: The Bushing. 
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Figure 7.4: The Aluminum Block. 
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Figure 7.5: The Projection of Data Points in Level 1. 
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Figure 7.6: The Representation of Data Points in Level 2. 
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Figure 7.7: The Picture of Data Points in Level 3. 
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CHAPTER 8. CONCLUSION 

In search of a least squares center, we have shown that for 4 < n < 200 and n 

is a multiple of 4, there exists a unique circle which best fits the data points when 

the data points are scattered around an annulus with equal spacing angle-wise and 

randomly located radius-wise. The annulus is constructed in such a way that the 

radius of the inner circle is 1 and the width of annulus, «, is no greater than 0.05. 

The inner radius can be regarded as the radius of the hole when the hole is at its 

MMC. Let us consider three points that make our criterion realistic and practical. 

1. By evaluating the diameter before circularity, we can assume that the hole has 

satisfied the specification of the size tolerance when evaluating the circularity. 

2. The ISO standard [17] suggests that K is almost always less than or equal to 

0.05 times the radius at MMC for any design specification. 

3. Based on the capabilities of CMMs, the equal spacing angle-wise data points 

can easily be obtained from the surface of a hole. 

Therefore, when evaluating the circularity of cylindrical parts, an annulus larger than 

K would indicate that the legist squares method is no longer valid. Thus this method 

provides assurance for engineers in obtaining a unique circle (i.e., a unique center) 

when they use the ISO least squares method to fit a set of discrete data points as 
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not satisfied. In most cases less than 200 

circularity, thus our criterion is very useful 
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APPENDIX A. E?=i S i  >0 IF (z,, y c )  (0,0) 

We define a new function flr„(x, y, ci, eg,, e^) as follows: 

n 
fl'n(a;,î/,ct,C2,--.,Cn) = + (A.l) 

1=1 

By (A.l) we know that y> Ci, cj,..., e„) is the sum of distances from point (x, y) 

to point (x,-, yî) V i. We can show that 

S + ̂ ') 
i= l  i= l  t= l  

=  +  ( • - •  ' Ô r Â i = l  + ei + Si) 
1=1 1=1 

~ 9n(,^ct {/ci ^1J ^2» • • • > ^n) fl'n(Oj 0, ex j eg,..., en). (A.2) 

n n 
( . O'A-i = gfn(®c, t/g, ei, eg,. • •, e^) and ^_](1 4" c«) — 5n(0» 0? ^21 • • • 1 ^n)) 

1=1 1=1 

By (A.2), it is clear that E?=i > 0 if and only if flfn(xc, 2/c, ei, eg,..., €„) > gn(0,0, 

ei, eg,..., e„). Thus we can show that 

If (xc,yc) ^ (0,0), then E(Li > 0. 

"* '' If (^0 î/c) ^ (0,0), then yci ^i, eg,..., e,i) > ^n(0,0, e^, eg,. • •, (»). 

<=> (0,0) is the only global minimum of 5r„(x, y, ei, eg,..., e„) V (x, t/). 

Thus the problem (i.e., if { x c , y c )  ^ (0,0), then X^7=i > 0) can be rephrased as that 

(0,0) is the unique global minimum of flf„(x, y, ei, eg,..., e„). We can show that (0,0) 
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is the unique global minimum of Çnix, y, ci, cg,..., e„) by showing two propositions 

as follows: 

Proposition 3: Function y, ei, 62,, Cn) is strictly convex. 

Proposition 4: Function gn{x,y,ei,e2,.. .,€n) has the unique global minimum at 
(0,0). 

The proofs of the two propositions are as follows. 

Proposition 3 Function gnix, y, ci, 62,..., c„) is strictly convex. 

Proof: 

1. Taking the first partial derivatives of ci, 62,..., 6») with respect to x 

and J/, we obtain 

^1) ^2) • • • > ^n) ^ /« o\ 

1=1 s J i x - X i Y  - > r { y - y i Y '  

and 

d g n j x , y , e i , £ 2 , •  •  • , C n )  _  ^  y - y i  

For the second partial derivatives of gn{x,y,ci,62,...,e„), we obtain 

d ^ g n { x , y , e i , e 2 , . . . , € n )  _ A (y-yi)^ ,. 

^ î/j £1, C2> • • • ) ^n) (z — j / A /?\ 
V = S «x-xO^+ (»-,,P)-

d^gn{x,y,€i,e2,...,en) _ " (z - z.)(y - y.) 
ôzôî/ èi ((®-a;,)2 + (î/-y,)2)i-5* 

We then construct a Hessian matrix of £fn(z, y, ci, £2» • • • ? Cn) as follows: 
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H = 
&^9n{3!,y,tuti,„.,i„) 9'an(g.Viei.ea.—.to) 

d x ^  d x d y  

d x d y  d y ^  

The determinants of the principal leading minors of H are det(H[l,l]) and 

det(H). It is clear that det(H[l, 1]) > 0. By Cauchy's inequality, it is also clear 

that 

{y - Vi? det(H) 
_ / ̂  ( 

\èi ((« - + (y - ) 

_ /A (a; - a!.)(y - y.) \ 
((® - + {y-

\  /f { x - x , y  \  

' V \h + (y - yinv 

> 0. (A.8) 

We can show that when n > 4, det(H) ^ 0 (see Lemma 2 in Appendix A.l), 

thus by (A.8) we obtain that det(H) > 0. Thus by lemma 1 of chapter 2 in 

Searle [19] (see section 5.2), we know that Hessian matrix H is positive definite. 

2. Taking the third partial derivatives of gn{x^ y, ci, eg,..., e„), we obtain 

d^9nix,y,ei,€2,...,en) _ A -3(y - yi)^{x - a;,) 
dx^ èï ((z - a:,)2 + {y- y,)2)2-5 ' 

(A.9) 

d ^ 9 n i x , y , e i , e 2 , . . . , e n )  _ A 2(y - y.)((g - g.)' -2 { y  -  y.)^) 
d x ^ d y  6 ((z-z,)3 + (y-y,)')'.« ' 

d ^ g n i x , y , e i , e 2 , . . . , e n )  _  ^  2 { x  -  X i ) { { y  -  y j ) ^  -  2 i x  -  X j f )  
d x d y ^  ^ ((z-z,)' + (y-y,.)T= ^ 

and 

^^5n(x,y,ei,e2,...,e„) " -3(a: - ®,)2(y - y.) 
dy' " + (y-y.W' 

By (A.9), (A.10), (A.11) and (A.12) we know that the third partial derivatives 

of gn{x,y,ei,e2,...,en) exist and are continuous, thus by definition 3.3.5 in 
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Bazaraa [11], theorem 14 of chapter 10 in DePree [35] (see section 5.2) and 

definition 15 of chapter 10 in DePree [35], we obtain that y, ci, £2» • • • j Cn) 

is twice difFerentiable. It is clear that Int{D) is a nonempty open convex set. 

3. By proof statements 1 and 2 and theorem 3.3.8 in Bazaraa [11], we conclude 

that gn{x, y, ci, , e„) is strictly convex. 

This concludes the proof of Proposition 3. 

Proposition 4 Function flin(a:,t/,ei,C2,• • • has the unique global minimum at 

(0,0). 

Proof: 

1. We can show that if n > 2, then I3"_i cos { { i  — 1)^) = 0, and sin ((z - 1)^) 

0 (see Lemma 3 in Appendix A.l). 

2. When { x , y )  =  (0,0), by (A.3) we obtain that 

d9n{x,y,ei,e2,...,en) _ ^ x-xj 

1=1 y / { x -  X i ) ^  +  { y -  V i ) ^  

" -Z,' 
= £ / „ ' (•.' (®.î/) = (0,0)) 

< = 1  y / x f  +  y f  

= g-cos((z- 1)^) 

= 0. ('.• proof statement 1) 

Similarly, using (A.4) we obtain that when { x , y )  = (0,0), = 0, 

Therefore, we know that the first partial derivatives of gn{x, y, 61,62,..., e„) are 

zero at (0,0). 
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3. Given that gn{x,y,€1,62, is twice difFerentiable at (0,0), and the value 

of Hessian matrix H at (0,0) is positive definite as we have shown, by theo­

rem 4.1.4 in Bazaraa [11] (see section 5.3.1) we conclude that (0,0) is a local 

minimum of (/„(x, y, ci, €3,..., e„). 

4. Given that I n t { D )  is a nonempty convex set in Eg, and Ç n i x ,  y ,  ei, €2,..., en) is 

strictly convex, by theorem 3.4.2 in Bazaraa [11] (see section 5.3.1) we conclude 

that (0,0) is the unique global minimum of gn{x, %/, ei, eg,..., c„). 

This concludes the proof of Proposition 4. 

Lemma 2 When n > 4, det(H) ^ 0 

This proof is shown by contradiction. We first assume that det(H) — 0, then we 

show that there is a contradiction in the assumption of det(H) = 0. Thus we obtain 

that det(H) ^ 0. The details are as follows. 

1. Assuming that det(H) = 0 (see (A.8)), then by the proof of lemma 8.1 of 

chapter 2 in Mendelson [12] (see Appendix A.1.1), there exists a A G such 

A.l 

Proof: 

that 

t=i E 
n 

= 0. 

n 
- ®t)]^ = 0. 

y  —  y i  +  —  x i )  =  0  V i .  (A.13) 
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2. When n is a positive even number, say n = 2m, substituting i = 1,2 into (A.13), 

we obtain 

y-yi + ^x — xi) = 0, and (A.14) 

y  -  y 2  +  A(a: — X 2 )  = 0. (A.15) 

Where 

xi = l + ci, (A.16) 

yi = 0, (A.17) 

STT 
®2 = (l + e2)cos(—), and (A.18) 

u 
STT 

Vi = (l + e2)sin(—). (A.19) 
n 

Solving A by (A.14) and (A.15), we have 

A = 
Xi — X2 

# 0. (•.' Î/1 = 0 and î/2 7^ 0) (A.20) 

Similarly, substituting z = l,m + 1 into (A.13) and solving A, we get 

A = (A.21) 
»1 - Im+l 

Where 

STT 
2/m+l = (1 + €m+l)sin[(m + 1 — 1)—] 

= (1 + em+i)sin7r 

= 0. (A.22) 
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Substituting (A.22) and (A.17) into (A.21), we obtain A = 0, which contradicts 

(A.20) (where we show A ^ 0). Thus when n is a positive even number, there 

is no A € A satisfies (A.13). 

3. When n is a positive odd number, say n = 2m+l, using the analogy in proof 

statement 2, we can easily show that substituting « = 1, m + 1 into (A. 13) and 

solving A, we obtain 

^ _ y\ — Vm+l 

— aJm+i 

> 0, (A.23) 

and substituting i = l,m + 2 into (A.13) and solving A, we obtain 

X = ~ ym+2 

< 0. (A.24) 

It is clear that the A in (A.23) contradicts the A in (A.24). Thus when n is a 

positive odd number, there is no A 6 A satisfies (A.13). 

4. Given that when n is a positive integer number, there is no A E A satisfies 

(A.13) as we have shown, we know that the assumption of det(H) = 0 is not 

true. Thus, we conclude that det(H) ^ 0. 

This concludes the proof of Lemma 2. 

Lemma 3 If n > 2, and n is a positive integer, then cos ((% — 1)^) = 0, and 

E?=isin((i-l)f) = 0. 

The proof of this lemma is provided by Dr. R. H. Sprague. 

Proof: 
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1. Let S be a summation of complex numbers such that 

S = è[cos((j-1)—) + isin((j-l)^)], (A.25) 
,=i " « 

where i = \/^. By DeMoivre's theorem [21], we know that 

(cos 0 + Î sin 6y = cos{a9) + i sin(o^) (A.26) 

V a  e  R ,  k  —  I T  <  9  <  I T .  

Substituting (A.26) into (A.25) with a = j — \ and ^ we obtain 

S = ^[cos—+ isin—(A.27) 
U n n' 

2. By definition [21], we know 

cos a + * sin a = e'®. (A.28) 

So, substituting (A.28) into (A.27) with a = ^, we obtain 

S = 
i=i 

1 — e 2m 

1-e^ 

= I::::::: '•••(a.S,) 

= 0. (A.29) 

3. Thus, by (A.29) we know that both the real and imaginary units of S are 0. 

So, by (A.25) we find that 

n n_ 
]E^cos((7 - 1)—) = 0, (A.30) 
j=i " 
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and 

n 

2sin((i-l)—) = 0. (A.31) 
j=i ^ 

4. Since the j in (A.30) and (A.31) is a dummy variable, we can rewrite (A.30) 

and (A.31) as 

53cos((i - 1)-—) = 0, 
1=1  ̂

and 

n  n_ 
2sin((i-l)—) = 0. 
•=i " 

This concludes the proof of Lemma 3. 

A.1.1 

Lemma 8.1 of chapter 2 in Mendelson [12]; Let (ui, U2,..., Un), (ui, vg,..., 
u„) be n-tuples of real numbers, then 

n r  n  1  a r  n  
^UiVi < E"? 
1=1 .1=1 .1=1 
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APPENDIX B. IF [ x c V c )  # (0,0), THEN AT LEAST ONE OF S < s  <  0 

Proof: 

1. Suppose {xc^yc) ^ (0,0), f, > 0 V i. By definition we obtain 

O'Ai = 1 + e,' + 6,-, (B.l) 

and 

ÔÂi = 1+c.-, (B.2) 

V i. Thus by (B.l) and (B.2) and our assumption, we have 

6, > 0 V i 

4=»- 1 + c,• + 5,- > 1 + 6, V i 

> ÔÂi y i. (B.3) 

(B.3) states that O'Ai is no less than OA" V i. 

2. Let the inner circle of the annulus be divided into n equal sectors £is shown in 

Figure B.l. Let's suppose that the 0'{xc,yc) falls arbitrarily into the ith sector 

of the inner circle as shown in the shaded area of Figure B.l. The zth sector 

is formed by two radii, say OA'i and OA'i^i, and their intercepted arc. When 
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O'ixciVc) is in the ith sector and 0'{xc,yc) ^ 0(0,0), we can show that (see 

Appendix B.l) 

UTi+UI^^ > + (B.4) 

However by (B.3) we know that 

O'Ai + 0'Ai^\ > OAi + OAj+i. (B.5) 

(B.4) and (B.5) contradict to each other. So we know that our assumption is 

not true, i.e., if {xc,yc) ^ (0,0), then there exists at least one of 5,'s < 0. 

This concludes the proof. 

B.l 

The eth sector is composed of three parts such as two edges OA'i and 

the central triangle AOAfA'^^-^ not including the two edges, and the segment not 

including the chord A'iA'i^i (see Figure B.2). We will show that if 0'{xc,yc) is in 

either one of the three parts of the ith sector, then 

OAi + OAi^x > O'Ai 4" 0'Aij^\. (B.6) 

The details are as follows. 

Before doing the proof, we need the following theorems. 

Theorem 34 in Walsh [30]: The Triangle Inequality: The sum of the lengths of 
two sides of a triangle is greater than the length of the third side. 
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Theorem 7.5 in Wilson [31]: Law of Sines: In any triangle ABC , 

sini4 _ sin5 _ sinC 
a b c ' 

That is, the ratio of any side of a triangle to the sine of the angle opposite the 
side is constant in any triangle. 

Theorem 3.3.6 in Wallace [36]: If two angles of a triangle are not congruent, then 
the sides opposite them are not congruent and the larger side is opposite the 
larger angle, i.e., given a triangle ABC, if lA > IB, then BC > AC. 

Proof: 

1. Suppose that 0' is in the edge OA] and 0' ^ O as shown in Figure B.3. 

Knowing that 0 — ^ and n > 4, we obtain 

B (B.7) 

Since ^ O' is in the edge OA'^, and O' ^ O, we can always form a triangle 

AOO'Ai+i. Applying theorem 34 in Walsh [30] to AOO'Ai+i, we get 

<=>" O'Ai + 0'Ai^\ < OAi + OAi+i. OAi = O'Ai + 00') 

Similarly, we can show that if 0' is in the edge 0A\^-^ and O' ^ 0, then 

0'A{ + O'Ai^i < OAi "H OAf^i. 

2. Suppose that 0' is in the central triangle AOA^A\^-y not including the two 

edges, OA'i and as shown in Figure B.4. Knowing 0 < |, we can always 

draw a line O'Ai+i which intersects the edge OA'i a point Q. Therefore 
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we can always form two triangles such as AO'QAi and AOQAi+\. Applying 

theorem 34 in Walsh [30] to AO'QAi, we acquire 

WXi <  ̂+ (B.8) 

Applying the same theorem to AOQAi+i, we procure 

QAi+i < OAi+i + OQ 

4=^ O'Q 4- 0'Aij^\ < OAj+i+OQ. (B.9) 

(•/ = ô^+ô^) 

Combining (B.8) and (B.9), we obtain 

O'Ai + O'Q + O'Ai+i < QAi + O'Q + OAi^i + OQ 

4=^ O'Ai + O'Ai+i < QAi + OAi+i + OQ 

<^'D^i+WIi:^ < UÂi+UÂi^. (B.IO) 

( • /  U Â i  =  ^ i  +  U Q )  

3. Suppose that 0' is in the segment not including the chord A'iA'i^i as shown in 

Figure B.5. Knowing 0 < |, we can show that every point in the segment can 

be reflected by the chord A'iA'î i onto (see Lemma 4). Let point S 

be the reflection of the point 0'{xe,yc) (see Figure B.5). Drawing a line from 

point S to point Ai, we can always intersect the chord A'fA'i^i ^.t a point Pi. 

Considering AO'PiS, we have 

= WP. (B.ll) 

Applying theorem 34 in Walsh [30] to AO'Pi Ai, we get 
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<^'DrÂi < Â^i + p^ (•.• (B.ii)) 

4=>âTi < Â^. (B.12) 

Equal sign in (B.12) occurs when AO'Pi Ai degenerates into a line. Applying 

the same procedure to AO'Ai+iS, we obtain 

ÔTÂ  ̂ < (B.13) 

Equal sign in (B.13) occurs when A0'P2Ai+i degenerates into a line. Combining 

(B.12) and (B.13), we acquire 

WTi+u^j;^ < (B.U) 

Given that 

Ai S + Ai^iS < OAi + OAi^i, (B.15) 

as we have shown, by (B.14) we get 

0'Ai O'Ai^i < OAi 4" OAi+i. (B.16) 

This concludes the proof. 

Lemma 4 If ^ then all the points in the segment of the ith sector can be 

reflected by the chord onto AOA'iA'i^i. 

Proof: 

1. Let O" be the reflection of O, and the arc be the reflection of 

arc A'iRiA'i^i by the chord (see Figure B.6). If arc is in 

AOA'iA'i^i, then all the points in the segment of the ith sector can be reflected 

by the chord A'iA'i^^ onto AOA'iA'i^^. 
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2. Let a be the angle of L0A!^0". Considering we have 

= f 
= 

O! = ir — $. (B.17) 

Knowing d < f, by (B.17) we obtain 

a > ^. (B.18) 

3. Let be an arbitrary point in arc A'iR2 such that S'l ^ /l|, then we can draw 

a line 0"Si which will always intersect the edge OA'i a point Si. Applying 

theorem 7.5 in Wilson [31] to AO"AiSi, we get 

0"Ai 
sin a sinlA'iSiO" 

0"Si > 0"A'i ('.• a> iA[S\0" and theorem3.3.6 in Wallace[36]) 

> 0"S[. (•; 0"A\ = 0"S[) (B.19) 

By (B.19) we conclude that the point S'l is in A0A\Z. Since S[ is an arbitrary 

point in arc AjAg, thus we conclude that arc is completely in AOA'iZ. 

Similarly we can show that the arc A'i^^R2 is completely in AOA'^^^Z. Therefore 

we conclude that the arc is in AGAfAi^^. 

This concludes the proof. 
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y 

P'(x. 

1+1 

i t h  s e c t o r  

1 + «  

Figure B.l: A Division of n Equal Sectors in the Inner Circle of the Annulus. 

0 

Segment 

1+1 

1+1 

Figure B.2: The Components of the ith Sector. 
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0 

1+1 

Figure B.3: The 0' in the Edge OA^. 

0 

1 + 1  

Figure B.4: The 0' in the Triangle AOA'iA'i^^. 
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0 

1+1  

Figure B.5: The 0' in the Segment of the zth Sector. 

0 

1+1 

Figure B.6: The Reflection of the Segment of the ith Sector by the Chord 
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APPENDIX C. THE GLOBAL MINIMUM CONDITIONS OF An 

We reformulate the constrained minimization problem in section 4.1.1.2 as fol-

subject to 1. - A)^ < c, 

2. E?=iA.>0, 

3. at least one of A|â < 0. 

Here c = 4 - ë)^, A = ^ and A^ is the minimum of A,- V i. 

Proof: 

1. Because of both An is the minimum of A,- V i and the constraint 3, we obtain 

that if An reaches its global minimum, say An., then 

2. We can show that if A„ reaches its global minimum, A„», and the corresponding 

values of other A,' are A,-« Vi = l,2, ...,n — 1, then (see Appendix C.l) 

lows. 

Minimize An 

An. < 0. (C.l) 

n 
 ̂A,'. = 0. (C.2) 



www.manaraa.com

107 

3. Given A,'. = 61 > 0, we can show that if A,> reaches its global 

minimum, then (see Appendix C.2) 

k\ 
Ai. = Ajh. = ... = A(„_i)» = ^ (C.3) 

4. Given condition 1 and (C.2), we know that when An reaches its global mini­

mum, 

Z(A,-A): =  ± A J  
1=1 1=1 

< c. 

Since c is a constant, thus A? must be minimum. By (C.3) we know that 

A? reaches its minimum when 

Ai = Ag = ... = An—1 — rAn. 
n — 1 

This concludes the proof. 

C.l 

We can show (C.2) by contradiction. We first assume that when An reaches its 

global minimum, A„„ A<, ^ 0. Then we can find a new arrangement of Aj, say 

A|„ V i such that J2i=i A|, = 0 and the new value of An, i.e., A^., is smaller than 

An.. This then contradicts the assumption that An. is the global minimum of An. 

The details are as follows. 

1. Suppose that when An reaches its global minimum, say An., 122=1 7^ 0. For 

the sake of argument, let's assume that the arrangement of A<« V i is as shown 
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in Figure C.l. In this arrangement we know that by the constraints 2 and 1, 

we obtain 

> 0, (C.4) 
1=1 

and 

< C. (C.5) 
,=1 

Where 

3. = — ^ Ai,. (C.6) 
" 1=1 

2. By (C.4) and (C.6) we know that A, > 0. We can find a new arrangement of 

A,-, say A',, (see Figure C.2) such that 

a;. = A,.-̂ ., V i. {C.l) 

In this new arrangement, it is easy to show that the constraint 1 is satisfied as 

follows: 

1=1 i=l 

< c. C; (C.5)) (C.8) 

We can show that this new arrangement satisfies the constraint 2 as follows: 

n n 

E = 5^(A,-,-A,) 
$=1 tsl 

n 

= 51 ~ 



www.manaraa.com

109 

It is clear that the new arrangement satisfies the constraint 3. Thus we con­

clude that the new arrangement, A), V is a valid solution to the constrained 

minimization problem. 

3. It is clear that 

— An» — 

< An.. (C.9) 

By (C.9) we know that it contradicts the assumption that An» is the global 

minimum of An. 

This concludes the proof. 

C.2 

We show (C.3) as follows. Let 

X = _&!_ _k_ JSL 
n-1 n-1 ••• n-1 Jix(n-2). 

(C.IO) 

Furthermore, let 

n—1 
9 = 

1=1 

= + = (C.ll) 
i=l 1=1 1=1 

By (C.ll) we know that g : ^n-2 —*• Ei. We will show that g is strictly convex 

on En-2 and x is the global minimum of g on En-2- Then using the constraint of 

A,-, = ti, we obtain that if A^ reaches its global minimum, then 
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Before doing the proof, we need the following definition and theorems. 

Theorem 2.1.1 in Myers & Milton [27]: A symmetric matrix A is positive def­
inite if and only if all its eigenvalues are positive. 

Definition 1 in section 1 of chapter 2 in Hogben [28]: Let A be a nxn ma­
trix. The 2, j-minor of A is the (n — l)x(n — 1) matrix obtained from A by 
deleting row i and column j. The i, j-minor is denoted M,j. 

Theorem 5 in section 3 of chapter 2 in Hogben [28]: The determinant of a 
nxn matrix A may be computed by expanding by cofactors on any row or 
column. That is, 

det(A) 
= a.i(-l)'+\det(Ma) + a<2(-l)'+Met(M.2) + ... + a.„(-l)'+" det(M,„) 
= a i i ( — l ) ^ ' ' ' ' ' d e t ( M i j )  - | -  0 2 j ( — l ) ^ ' * ' ^ d e t  ( M g ^ )  - f -  . . .  - f -  O m j  ( — 1  d e t ) ,  

for any i,j = 1,..., n. Here a,j is the entry in row i and column j of the matrix 
A. The quantity (—l)''^''det(M,j) is called the i, j-cofactor of A and is denoted 
A,'j. 

Theorem 2 in section 1 of chapter 7 in Hogben [28]: Let A be a nxn matrix. 
The real number A is an eigenvalue of A if and only if det(A — AI) = 0. Here 
I is a nxn identity matrix. 

Theorem d in section 3 of chapter 4 in Searle [29]: Adding to one row (col­
umn) of a determinant any multiple of another row (column) does not affect 
the value of the determinant. 

Proof: 

1. We show that all the first partial derivatives of g are zero at x as follows. Taking 

the first partial derivatives of g with respect to V i, we obtain 

f ) a  
= 2A,..4-2(ti-gA,.)(-l) V (C.12) 

OL\i^ ,=1 
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Making (C.12) equal to zero, we obtain 

— (&i — ^ A,,) = 0, (C.13) 
1=1 

A2* — (^1 — ^ A,*) = 0, (C.14) 
1=1 

w—2 
A(n-2)» — (^1 — A,-,) = 0. (C.15) 

1=1 

Summing up (C.13) through (C.15), we obtain 

51 — (n — 2)(ti —  ̂Af.) = 0 
1=1 1=1 

n—2 
(" - 1) ]C = (^ - 2)&i 

1=1 

"-2 (n - 2)&i 
(C.16) 

è i  n - 1  .  

Substituting (C.16) into (C.13) through (C.15), we obtain 

A i .  =  — V  i .  
71-1 

Thus we know that all the first partial derivatives of g are zero at x. 

2. We show that the Hessian matrix of g is positive definite on En-2 as follows. 

Using (C.12), we take the second partial derivatives of g with respect to A,', 

and Aj«, obtaining 

= 4, V i, (C.17) 

and 

d^g 

dAi^dAj» 
= 2, V z ^ J. (C.18) 
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So we obtain the Hessian matrix of g, H, as follows: 

H 

1* 
_9Ll 

Jh. 

_8îa_ 

a* 

dù3»ùk2. 

_ÊlL 
dAlaAsa 

9^2*^3» 

âÂf: 

J!îa_ 

Jîa_ 
9Ai,A(„_2), 

gfa 
aA3,A(„_a), 

Êfa 
8Ù3*A(„_2), 

9A(n-2)»Al» 9A(n-2)»A2« 9A(„_2),A3, 

4 2 2 . . 2 

2 4 2 . . 2 

2 2 4 . . 2 

(n-a)* (n—2)x(n—2). 

2 2 2 . . 4 
(n—2)x(n—2). 

3. Let I be a (n — 2)x(n — 2) identity matrix. Thus we obtain H — AI, Hi, 

follows: 

A 2 2 . . 2 

2  4 - A  2  .  .  2  

2  4 - A  .  .  2  
Hi = 

2  2  2  .  .  4 - A  
(n—2)x(n—2). 

4. Let the manipulation of rows (columns) of a matrix A, 
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row (column) i - k [row (column) j] —> row (column) i 

stand for subtracting a multiple of k of row (column) j from row (column) i 

and putting the result into row (column) i in the matrix A. We then do the 

manipulation of rows of Hi as follows: 

row 3 - row 2 —> row 3, 

row 4 - row 2 —> row 4, 

row 5 - row 2 —> row 5, 

row (n - 2) - row 2 —> row {n - 2), 

row 2 - row 1 —> row 2, 

resulting a new matrix Hg as follows: 

4 - A  2  2  

—2 + A 2 — A 0 

H2 = 
0 —2 4" A 2 — A 

0 —2 -|- A 0 

We transform H2 as follows: 

2 

0 

0 

2 — A 
(n—2)x(n—2). 

column 1 + column 2 

column 3 + column 2 

column 4 + column 2 
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column 5 + column 2 —> column 2, 

column (n — 2) + column 2 —y column 2, 

and obtain 

Hg = 

4 — A 2(m — 1) — A 2 

—2 + A 0 0 . 

0  0  2 - A  .  

2 

0 

0 

0 0 0 .  2 - A  
(n—2)x(n—2). 

By theorem d in section 3 of chapter 4 in Searle [29], we obtain 

det(H-AI) = det(Hi) 

= det(H2) 

= det(H3) 

4 — A 2(w — 1) — A 2 . 2 

—2 + A 0 0 . . 0 

0  0  2 - A  .  .  0  

0 0 0 2 - A  

(C.19) 

(n-2)x(n-2). 

By theorem 5 in section 3 of chapter 2 in Hogben [28], we can find the deter­

minant of Hs by expanding by cofactors on column 2 of Hs, resulting in 

det(H3) — (2(n — 1) — A)(—l)^^^det(]VIi,2) 0 * det(M2,2) 4" 
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0 * det(M3,2) + ... + 0 * det(M(„_2),2) 

—(2(w — 1) — A)det(Mi,2)' (C.20) 

By definition 1 in section 1 of chapter 2 in Hogben [28], we obtain det(Mi,2) as 

follows: 

det(Mi,2) = 

- 2  + A  0  0  

0 2 — A 0 

0  0  2 - A  

0 0 0 

= (-2 + A)(2 - A)"-". 

0 

0 

0 

2 - A  
(n—3)X(TI—3) 

(C.21) 

Substituting (C.20) and (C.21) into (C.19), we obtain 

det(Il — AI) = —(2(ti — 1) — A)(—2 + A)(2 — A)" ^ 

= (2(n - 1) - A)(2 - A)"-=. (C.22) 

According to theorem 2 in section 1 of chapter 7 in Hogben [28], we make (C.22) 

equal to zero to find the eigenvalues. A, of H, resulting. 

A = 2, or 2(n — 1). (C.23) 

By (C.23) it is clear that all the eigenvalues of H are greater than zero. There­

fore by theorem 2.1.1 in Myers &: Milton [27], we know that H is positive definite 

on En-2' 



www.manaraa.com

116 

5. We show that g is strictly convex on En-2 as follows. Taking the third partial 

derivatives of g, we obtain 

By (C.24), (C.25) and (C.26) we know that the third partial derivatives of g 

exist and are continuous on En-2- Thus by definition 3.3.5 in Bazaraa [11], the­

orem 14 of chapter 10 in DePree [35] and definition 15 of chapter 10 in DePree 

[35] (see section 5.2), we obtain that g is twice difFerentiable on £?n-2- It is clear 

that En-2 is a nonempty open convex set. Given that H is positive definite on 

En-2 as we have shown, by theorem 3.3.8 in Bazaraa [11] (see section 5.2) we 

conclude that g is strictly convex. 

6. We show that x is a local minimum of g as follows. Given that all the first 

partial derivatives of g are zero at x, H is positive definite at x and g is twice 

difFerentiable at x as we have shown, by theorem 4.1.4 in Bazaraa [11] (see 

section 5.3.1) we conclude that x is a local minimum of g. 

7. Given x is a local minimum of g, g is strictly convex, and En-2 is a nonempty 

convex set as we have shown, by theorem 3.4.2 in Bazaraa [11] (see section 5.3.1) 

we conclude that x is the unique global minimum. 

(C.26) 

(C.24) 

(C.25) 

This concludes the proof. 
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Figure C.l: A Possible Arrangement of A,-, A,». 

Figure C.2: A New Arrangement of A,-, A|„. 
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APPENDIX D. E?=i(c.' - ë)2 < 

Before doing the proof, we need the following definitions and theorems. 

Theorem 4.5 in section 4 of chapter 5 in Mendelson [12]: A subset A of E" 
is compact if and only if A is closed and bounded. 

Definition 2.5.1 in Bazaraa [11]: A nonempty set S in En is called a polyhedral 
set if it is the intersection of a finite number of closed half spaces; that is, 
5 = {x : pjx < «,• V i = 1,2,..., m}, where p,- is a nonzero vector and a, is a 
scalar V i. 

Definition 2.5.2 in Bazaraa [11]: Let 5 be a nonempty convex set in En. A vec­
tor x 6 5 is called an extreme point of 5 if x = Axi + (1 — A)x2 with Xi, X2 € S, 
and A G (0,1) implies that x = Xi = Xg. 

Theorem 3.4.6 in Bazaraa [11]: Let be a convex function, and let 
5 be a nonempty compact polyhedral set in En- Consider the problem to 
maximize /(x) subject to x € S. There then exists an optimal solution x to 
the problem, where x is an extreme point of S. 

Proof: 

1. Let 

S = {(ei,e2,...,c„) I 0 < Cf < K, V (D.l) 

and 

n 
/ = (D.2) 

1=1 
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By (D.l) and (D.2) we know that / ; S —>• E\. We can show that / is convex 

on S (see Appendix D.l). 

2. It is clear that S is closed and bounded, thus by theorem 4.5 in section 4 of 

chapter 5 in Mendelson [12], we know that S is compact. Let 

Pil ~ [Ol> O2» Os» • • • > 0»—15 lij 0»+l > • • • Î On]lXn 

be an array with the zth element equal to -1 and all other elements are 0. Let 

PT2 ~ [Oil Og) O3,. . , Oi_i, Ij, Ot-fl, • • • » Ofijixn 

be an array with the ith element equal to 1 and all other elements are 0. Then 

we can represent 6" in a different form as 

5 = {x : pIIX < 0, and p%x < «, V 

Thus by definition 2.5.1 in Bazaraa [11], we know that 5 is a polyhedral set in 

En. By definition 2.5.2 in Bazaraa [11] we obtain a set of extreme points in S, 

say SE, as 

SE = {(ei,e2,...,£„) I e,-= 0 or «, V i}. (D.3) 

Given that S is both a compact set and a polyhedral set, 5 is a nonempty set, 

and / is convex on 5" as we have shown, by theorem 3.4.6 in Bazaraa [11] we 

know that there exists a global maximum, say x, of / V (€1,62,... ,e%) € S 

where x € SE. 

3. Let SEi — (ei», 62,, • • • > 5%*) be an arbitrary element in SE such that m of e,-, 

in S El are zero, and the other in SEi are K. Thus we obtain the value of / at 
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SEi as 

f{SEi) = 53(ei.-ë.)^ (Here ë, = i Ci.) 
.=1 i=i 
n 

në,^ = I] 4 -
i=l 

Tl 

(•.• x:"=i4 = (»- ")«'. Md Î. = !2^) 

= (n — m)«^ — (D.4) 

By (D.4) it is clear that f{SEi) is a function of m where m is a nonnegative 

integer such that 0 < m < n. We can show that an upper bound of f{SEi) is 

given by (see Appendix D.2) 

f(SE,) < jk'. (D.5) 

Since SEi is an arbitrary element in SE, thus we know that 

/(^l, C2> • • • > Cn) < V (ej, e2j • • • 5 ^n) € >?£?, (D.6) 

which in turn, gives 

/(Gi,C2,...,€n) < —K^ V (ei,e2,...,eTi) € 5. 

This concludes the proof. 

D.l 

It suffices to show that / is convex on En- We show that / is convex by showing 

that the Hessian matrix of / is positive semidefinite on En. The details are as follows. 

Before doing the proof, we need the following theorems. 



www.manaraa.com

121 

Theorem 2.1.2 in Myers Sc Milton [27]: A symmetric matrix A is positive 
semidefinite if and only if its eigenvalues are all nonnegative and at least one 
eigenvalue is zero. 

Theorem 3.3.6 in Bazaraa [11]: Let >9 be a nonempty open convex set in En, and 
let / : 5 —^ El be twice difFerentiable on S. Then / is convex if and only if 
the Hessian matrix is positive semidefinite at each point in S. 

Proof: 

1. We show that the Hessian matrix of / is positive semidefinite as follows. Taking 

the first partial derivatives of / with respect to e,- V i, we obtain 

^ = 2(ei-ë)(--) + 2(c2-?)(--) +•.. + 2(c,_i-ê)(--) 

+2(ef — c)(l ) + 2(e,+i — ë)( ) + • • • + 2(e„ — ë)( ) 
n n n 

= 2(e,-ë)(l )+ 2(ej-ë)(-i) 

= 2(e,- - ë)(l - ^ 53 - ë) 

=  2 ( e , ' - ê ) ( l  - -  ( - ( e , ' - ê ) )  ^ ( e ,  - c )  =  0 ^  

= 2(€i-ê)(l --) +-(ej-ë) 

= 2(e,—ê). (D.7) 

2. Using (D.7), we take the second partial derivatives of / with respect to e,- and 

ej, obtaining 

II = 2(1 - i) V i, (D.8) 

and 

= -- V j. (D.9) 
deidej n 
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The Hessian matrix of /, F, is given by 

F = 

a'/ 
e 

9t2dci 

9(39(1 9(3 3(2 

j9iL 
9(19(3 9(19(3 

9? 
9»/ 

9(29(3 

% 

9'/ 
9(19(n 

9'/ 
9(2 9(n 

a'/ 
9(3 9(n 

_ÊiL 9"/ 
9(n9(i 9(n9(3 9(n9(3 J nxn.  

2(1 - 1) _2 
n/  n 

_2 
n 

_1 
n 

4 2(1 - i) n n 

= 
_ 2  _ 2  

n n 2(1 - i) • _2 
n 

- 2  _ 2  
n n 

_2 
n 2(1 - I) . 

nXn. 

Let I be a nxn identity matrix. Thus we obtain F — AI, Fi, as 

2(1 - - ^ "n 
_2 

n • • 

_2 
n 

— 1 
n 2(1 - _2 

n • • n 

Fi = 
. 

1 
n 

_2 
n 2 ( l - i ) - A  

, 

.2  
n 

— 1 
n n n .  .  2(1- n) -

We transform Fi 

row 1 + row 2 —• row 1,  

nxn.  
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row 1 + row 3 —> row 1, 

row 1 + row 4 —> row 1, 

row 1 + row n —> row 1, 

giving a new matrix Fg as follows: 

— A  — A  — A  

- n  2 ( 1  - i ) - A  

_  ~ n  - i  2 ( l - i ) - A  .  .  

r-n • • 2(1 

We transform Fg 

column 2 - column 1 —> column 2, 

column 3 - column 1 —^ column 3, 

column 4 - column 1 —> column 4, 

column n - column 1 —y column n, 
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obtaining a new matrix F3 as follows: 

- A O  0  

F3 = 

- -  2 - A  

0 

0 

2 — A 

. 2  
n 

0 0 

0 

0 

0 

. 2-A 
nXn. 

By theorem d in section 3 of chapter 4 in Searle [29], we obtain 

det(F — AI) 

= det(Fi) 

= det(F2) 

= det(F3) 

-A 0 

-- 2-A 

-ÏÏ 0 

0 

0 

2-A 

2 
n 

0 

0 

0 

2-A 
nXn. 

(D.IO) 

By theorem 5 in section 3 of chapter 2 in Hogben [28], we can find the deter­

minant of F3 by expanding by cofactors on row 1 of F3, resulting 

det(F3) = —A(—l)^'''^det(Mi,i)-f-0 * det(Mi,2)+ 

0 * det(Mi,3) + ... + 0 * det(Mi,„) 

= —Adet(Mi,i). (D.ll) 
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By definition 1 in section 1 of chapter 2 in Hogben [28], we obtain det(Mi,i) as 

follows: 

det(Mi,i) = 

2 - A  0  0  

0  2 - A  0  

0  0  2 - A  

0 0 0 

= (2-A)"-\ 

0 

0 

0 

2 — A 
(n—l)x(n—1) 

(D.12) 

Substituting (D.ll) and (D.12) into (D.IO), we obtain 

det(F — AI) = —A(2 — A) n—1 (D.13) 

According to theorem 2 in section 1 of chapter 7 in Hogben [28], we make (D.13) 

equal to zero to find the eigenvalues, A, of F, resulting. 

A = 0, or 2. (D.14) 

By (D.14) it is clear that all the eigenvalues of F are nonnegative and one of 

them is zero. Therefore by theorem 2.1.2 in Myers & Milton [27], we know that 

F is positive semidefinite. 

5. We show that / is convex as follows. Taking the third partial derivatives of /, 

we obtain 

0 = 0, v<, (D.15) 

(D.16) 



www.manaraa.com

126 

(D.17) 

By (D.15), (D.16) and (D.17) we know that the third partial derivatives of / 

exist and are continuous. Thus by definition 3.3.5 in Bazaraa [11], theorem 

14 of chapter 10 in DePree [35] and definition 15 of chapter 10 in DePree [35] 

(see section 5.2), we obtain that / is twice differentiable. Given that / is twice 

difFerentiable, En is a nonempty open convex set, and F is positive semi definite 

on En as we have shown, by theorem 3.3.6 in Bazaraa [11] we conclude that / 

is convex. 

This concludes the proof. 

We first show that if n is a positive real number and m is a nonnegative real 

number such that 0 < m < n, then f{SEi) has a global maximum at m = | 

with the corresponding global maximum value as ^/c^. Since in our original problem 

(m, n) e (/+ U {0}, Z"^) C (i?"*" U {0}, R^), thus we know that if m is a nonnegative 

integer and n is a positive integer such that 0 < m < n, then f{SEi) < The 

details are as follows. 

1. Let's assume that m is a nonnegative real number and n is a positive real 

number such that  0 < m < n.  Taking the first  part ial  derivatives of f{SEi) 

with respect to m, we obtain 

D.2 

Proof: 

(D.18) 
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Making (D.18) equal to zero, we obtain 

= » 

—n 4- 2(n — m) = 0 

n = 2m 

m = —. (D.19) 

2. Taking the second partial derivative of f{SEi) with respect to m, we obtain 

a'nsEi) _ _2 , 
dm? n 

< 0. (D.20) 

By (D.20) we know that f{SEi) is a strictly concave function of m. Thus it is 

clear that f{SEi) has a global maximum at m = ^. i.e., 

f{SEi) = -  m -
71 

< /(f) 

= p. 
4 

This concludes the proof. 
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APPENDIX E. THE CONDITIONS OF THE LARGEST G'^ 

Proof: 

1. Let IND be the intersection of the complements of Int{Di) V i .  i.e., 

IND = n;LiC(/n<(A)). 

Given that 

5» > —y/n — 1/c, (E.l) 

as we have shown, we can show that the largest value of IND occurs when 

8» = —y/n — 1«. The argument is as follows. 

If we choose a value of 5», say 6% such that S'^ > —y/n — 1/c, then we obtain 

1 + c," + > 1 + — y/n — 1/c 

V i .  Let D\ and D" be two concentric discs with a common center of polar 

coordinate of (1 + e,-, Oî) and with the radii of 1 + e, + 8'^ and 1 + c, — y/n — 1/c 

respectively. It is clear that 

D" C V i .  

Thus we obtain 

C{Int{D")) D C{Int{D\))\ i  i .  

^r\UC{Int{D'l)) D r^UC{Int{D\)). (E.2) 
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We observe from (E.2) that the intersection of the complements of Int{D") V i  

contains the intersection of the complements of Int{D\) V i. Thus we conclude 

that  the largest  value of IND occurs when 8* = —\/n — 1«.  

2. Now, we want to show that the largest value of IND occurs when e,= 0 V z. 

Let 6, = —Y/n — IK. We obtain 

1 + > 1 + V i. 

Let D° be a disc with center of polar coordinate of (1,0,) and radius of 1 + 6.. 

Then it is clear that (see Figure E.l) 

£>? Ç Di V L 

Thus we obtain 

C{Int{D^)) D C{Int{Di))  V i .  

=(• n?„c(/n((0?)) 2 r\UC:(Int{Di)) .  (E.3) 

We observe from (E.3) that the intersection of the complements of Int{D°) V i  

contains the intersection of the complements of Int{Di) V i. Thus we conclude 

that  the largest  value of IND occurs when c,  = 0 V i .  

This concludes the proof. 
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Figure E.l: Illustration of Ç DI. 
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APPENDIX F. Lnc6> = -UncB> 

Let 

L  t  \  V \  X i  X  

,=1 •^{Xi -  z)2 + (yi  -  yY 

Before doing the proof, we need the following theorem and corollary. 

Theorem 3.5 of chapter 5 in Mendelson [12]: A subset A of the real line is 
compact if and only if A is closed and bounded. 

Corollary 4.3 of chapter 5 in Mendelson [12]: Let %2,..., Xn be compact 
topological spaces. Then n?=i is also compact. 

Proof: 

1. Given (z,-, yî)  = {xn,  yn) V i  and its corresponding value of (ci, ez,..., e„), say 

(en, £21,..., Cni)» we take the first partial derivatives of hn{x, y, en, e2i,..., e„i) 

with respect to x and y and obtain 

dhnjx,  y,  Cii, £21,. . . ,  Cni) _ ^  —(î/ti — vY /"F H 
dx ~ àî  ((®«i -  + (y»i -

< 0, and 

dhn{x^ y, £ii, £21,. . . ,  Cfii)  _  (g|i x){yii  — y)  .  .  

dy ~ èi ((®«1 -  + ivii  -

Given that kn(z,i/,eii,£2i,...,eni) is continuous and Gn is compact, by the­

orem 7.8 in Curtis [20] (see section 5.3.2) we know that there exists a global 
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maximum, say U\{xi,  y\)  in Gn- By (F.l) we know that hn{x,  y,  en, €21, ..., Cni) 

is a decreasing function of x given y. Thus we know that the global maximum of 

hn{x, y, fill, €21,. ., Cni) occuts at the left boundary of Gn- Figure F.l is shown 

to illustrate a possible location of Ui{xi,yi) in Gn-

2. Given n is even, {x,y) = (zi,yi) and (a:,,y,) = (xn^yn) V i, we can construct 

a new layout of (a;,y), say and {xi,yi), say (xi2,yi2), V i such that 

As an illustration. Figure F.2 is shown as a symmetrical counterpart of Fig­

ure F.l which satisfies (F.3) and (F.4). From (F.3) and (F.4), we obtain 

We observe from (F.5) that we can construct two layouts of (x, y) and (z,-, t/,) V 

i such that the value of hn{x, y, ei, 62,..., e»,) of one layout is the negative value 

of its counterpart of the other layout. 

are closed and bounded. Therefore, by theorem 3.5 of chapter 5 in Mendelson 

[12], we know that {(x,i/) : (x^y) G C?n}, {ci : 0 < c; < «} V z, are compact. 

As a result, by corollary 4.3 of chapter 5 in Mendelson [12], we know that the 

set {(z,j/,ei,e2,...,c„) : {x,y) G and 0 < e,- < «, V i) is compact. Con­

sequently, by theorem 4.5 of chapter 5 in Mendelson [12] (see Appendix D), 

(2:2» Î/2) = yi), 

(®i2>!/i2) = (—aJtij—yti) V i .  

(F.3) 

(F.4) 

Xii — Xi Xi2 — X2 

3. Since {x^y) € Gn and 0 < e,' < /c V z, thus we know that a:,y,£1,62, 
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we know that the set {(a;,j/,ei,62,...,e„) : {x^y) € Gn and 0 < e; < k, 

V *} is closed and bounded. It is clear that A„(a:,y,ei,C2j-..>CTi) is continu­

ous, therefore, by theorem 7.8 in Curtis [20] there exists a global maximum of 

Vi ^1; ^2} • • • > ^n)* 

. Let's say that the global maximum of hn{x, j/, ci, cg,..., e„) occurs when 

Furthermore, there exists another set of {x,y),  say and (z,,%/(), say 

V i  such that 

(x,y) = and 

(aîi . î / i)  = {xhVi) V i .  

In addition, let's say the global maximum value is UncO'- i.e.. 

J/y, Cj, ̂ 2» • • • > ^n) — UncO''  (F.6) 

(xu*,yu*) = (-<, -yZ), 

{xim,yi*) = {-Xi,-yi) V e, and 

^2*> • • • J ^n*) ~ î^u» ^1» ^2' * • • > ^n)' (F.7) 

Let 

(F.8) 

By (F.6), (F.7), and (F.8), we obtain 

^nc9' ~ Unc6' • (F,9) 
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5. We claim that Lnce' is a global minimum value of ci, e2,..., e„). The 

argument is as follows. Suppose that Lncd> is not a global minimum value of 

then there exists a global minimum such that {x,y) = 

and (z„y,) = {xsuy^i) V i, resulting 

Ca2j • • • J ^ ^ncB'' (F.10) 

Furthermore, there exists a set of {x,y),  say {x*,y*),  and say {xtuyu),  

V i  such that 

«.î/D = 

ixt i ,yt i)  = i-Xsi ,-yai)  V e, and 

2/j J ^t2> • • • J ^tn) ~ ^n(®a*5 î/»»> • • • ) ^sn)* (F 11) 

By (F.IO), (F.9) and (F.ll) we obtain 

î /a«> ^j2> • •  •  » ^sn) ^  

•>!—r hn(̂ Xg, J/j I Ctl J Ct2» • • • > t̂n)  ̂ U ĉO'' (F.12) 

We observe from (F.12) that Unc9> is not a global maximum of hn{x,y,ei,e2, 

. . . , Cn)- This contradicts the fact that UncS' is a global maximum of hn{x, y, €i, 

62,..., e„). Thus we know that our assumption is not true, i.e., Lnc9> is a global 

minimum of hn{x,y,ei,e2,.. .,€n). 

This concludes the proof. 
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Aim+1,1 
(*ïm+1,l»yim+1,l) 

A|».1 

Ai.i 
(*4,1 fVi.!) 

Al.t 
Vi.i) 

Ai.i 
(*1,1» Yi.i) 

ASHI+1,1 
(*Im*1,1,y3m+1,l) 

Figure F.l: A Possible Location of Global Maximum Point U\{xi^yx) 
^n(®> y» Gil, ^21) • • • ) ^nl)» 

Ai,a 
(*i,n y»,:) 

Ai.a 
(*1,2» yi.a) 

Ajm+i.a 
(*sm+1,î» yjnH'1,2) 

/ V (*4,2, y*,:) 
Am+1,2 

(*iti+l,2>ym*l,2) 
A>.2 

(*y,a»yy,2) 

A»,2 
(**,2»y».2) 

A2m+I,2 
(*2m*l,2i yam+l.l) 

Figure F.2: A Symmetrical Counterpart of Figure F.l Reflected by 0(0,0). 
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APPENDIX G. = -U, 

We will do the proof in two parts. First, we will show that when n is a multiple 

of 4, then Ln^c = —Unnc- Next, we will show that when n is even but not a multiple 

of 4, then = —UnKc also. The detail is as follows. 

Proof: 

1. Since n is even, let n = 2m. Recall that 

and 

(G.2) 

(G.l) 

2. Case 1: If m is even, then let m = 21, So we obtain n = 4/, resulting in 

(G.3) 

Substituting <i in (G.3) into (G.2) and (G.l), we obtain 

U and (G.4) 

'nnc 

=  K C O S ( ( I - L ) ^ ] « C O S  ( ( * - 1 ) ^ 1  
i=l+2 \ / i=2/+2 \ / 
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«=/+2 ^ / 

-K — 2K cos (n -{i-  1)^) 
i=/+2 \ / 

„ U / .2Tr\  
-K — 2/c^cos ^e—J 

-K-Zx^cos ((*- 1)^) ('.' cos(/^)=0) 

= -UnKc (G.5) 

3. Case 2: If m is not even, then let m = 2(4-1. So we obtain n = 4/ + 2, resulting 

in 

il = L^J = I (0.6) 

Substituting <i in (G.6) into (G.2) and (G.l), we obtain 

[+1 / 27r \ 
UnKc = « + 2/c^cos ^(i - l)^y^j , and (G.7) 

= « COS ((i - 1) « cos ((i - 1)^) 

2'+l / Off \ 

2/+1 

= -«-2«  E^cos(^- ( i - l ) j^ )  

= -»-2K|;cos((j-l)j^) 

— ~UnKc (G.8) 

This concludes the proof. 
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APPENDIX H. Ur,c9» = 

Let 

y» ^1» • • • J ^n) — n Tfl ' /  —» 
,=1 yj{xi- xy + {yi-yY 
n 

^n(®5 î/» ^2» • • • » ^ti) ~ ' 
y i -y  

t=i \J{xi-xY + {yi-yY 

We show that 

^n»ô' = ^ncô' » 

where Unce' is a global maximum value of hn{x, y, ci, £2,..., Cn) and UnsB' is a global 

maximum value of tn{x, y, cj, C2,..., e„). 

Proof: 

1. Let's say a global maximum of hn{x,  y,  t i ,  €2,..., Cn) occurs when 

(x^y) — {xu^yu)^ 

(Xi^yi)  = {Xiufyiu) V i .  (H 1) 

Figure H.l shows a possible location of the global maximum point U{xu,yu) 

and Aiu{xiu,yiu) V i with the corresponding value of (ei,e2,.. .,e„), say (ci^, 

62w, • • • > Cnu)) in the annulus. Thus we obtain that 

^n(®ui î/m ^lu> ^2ui • • • 1 ^nu) — ^ncO'- (H.2) 
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2. Given n = 4m and the layout of {x,y) and V i  in Figure H.l, we can 

construct a new layout of (a:,y), say and say (a;,„,y,v), V i  

We observe from (H.3) and (H.4) that (a;„, and (z,„, y,„) V i are the reflection 

of (xu,!/u) and (a:,u,y,u) V i by line x = y. Figure H.2 shows a reflection of 

Figure H.l by line x = y. From (H.3) and (H.4) we obtain 

We observe from (H.5) that we can construct two layouts of { x , y )  and (x,-,?/,) 

V i  such that the value of A„(x,i/, ei, eg, ... ,Cn) of one layout is equal to its 

counterpart of the other layout. 

3. We claim that Unae' = The argument is as follows. Suppose that UnaO' 

^ncd^ ) then t/naO* ^ Unc$* or Unaffi ^ ^nc0* • Let S Say UfiaO* ^ ^nc9^, then there 

exists a global maximum point, say {x,y) = {xa»,y„) and {x{,yi) = (a:,,, j/,,) 

V i, of t„(a:,2/, ei,C2,... ,Cn)j with corresponding value of (ei, £2, ...,£„)) say 

(eia, cza,..., e„j). Thus we obtain 

Furthermore, there exists a set of { x ,  j/), say (xwm, yw*), and (x,-, j/,), say {xiy, ,  yi^u), 

V i with the corresponding value of (cx, 62,. - -, ^n)» say (ciiy, C211/, • • •, ̂ nw), such 

such that 

(Xvj î /v) — (z/u,  Xu),  

(Xit/,î/t«) — (î/iujXju) V i .  

(H.3) 

(H.4) 

'^n(Xs*> î/s»> ^2J > •  •  •  > ^n») ^  ^nc6' '  (H.6) 
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(xiu/j î/iii;) — (î/»aj®ia) V î, and 

i ^nw) — î/»»» ^la» ^2J» • • • j ^na)* (H.7) 

Substituting (H,7) into (H.6), we obtain 

Ê2tu» • • • » ^nui) ^ ^nc6' • (H.8) 

We observe from (H.8) that UncS' is not a global maximum value of hn{x,y, 

ei, €2,..., e„). This contradicts the fact that Unce' is a global maximum value 

of 61,63,...,6n). Thus we know that our assumption is not true, i.e., 

Una6' ^ncS'' 

4. Applying the same procedure to the case of UntS' < we can show that 

UfisB' ^ ^ncB'' 

This concludes the proof. 
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y 

y:m+i.w) / j ( *M 

Asm«1,u 
Yam+liu) 

Figure H.l: A Possible Location of Global Maximum Point U{xu,yu) and 
Aiuixiu,yiu) V i in the Annulus. 

y».,) 

Ajin+l,* 
(Xlm+I.v, y»n*l,v) 

Ai,» 
(x<.v,y<.*) 

A».* 
y»,v) 

Am*1,» 
(Xm*l,v«ym+I,v) 

X 

Ai., 
(*/,»• y#,») 

Alm*|,* 
(X:m+I,v« y%m*l,v) 

Figure H.2: A Counterpart of Figure H.l Reflected by Line x = y.  
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APPENDIX I. = 

Recall that 

/ 27r iZ. / 27r\ 
UrxKc = K + 2« ^ COS ((i - 1)—1, and (I.l) 

1=2 \ ^ / 
<3+1 / Ofl-\ 

UnM - —)• (1.2) 
1=1 \ ^ / 

Proof: 

1. Given that n = 4m, we obtain t i  = m and <2 = 2m. Substituting t i  into (I.l), 

we obtain 

Un^e = « + 2« ^ COS ({i  -  1)^^ 

= « + 2«£cos^(Z-1)^). (1.3) 

Substituting <2 into (1.2), we obtain 

t'n.. = « E ((< - 1)^) 
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=  «  +  2«gr in( ( f - l )^)  

=  «  +  2Kg™s(f- (<- l )2^)  

= « + 2«^cos ̂ (m — î + 1)^^ 
t—2 ^ 277% / 

= « + 2«^cos ̂ (e - 1)^^ 
1—2 ^ 2 ni / 

— UnKC (1.4) 

This concludes the proof. 
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APPENDIX J. THEOREM 2 

Theorem 2 Let 5 be a nonempty compact polyhedral set in En, and let f  :  En—* Ei 

be a strictly convex function and continuous on S. Consider the problem to maximize 

/(x) subject to X e S. There then exists an optimal solution x to the problem, where 

X only occurs at  an extreme point  of S. 

Before doing the proof we need the following definitions and theorem. 

Definition 2.5.3 in Bazaraa [11]: Let 5' be a closed convex set in £'». A nonzero 
vector d in En is called a direction of S if for each x 6 5^, x + Ad 6 5" V 
A > 0. Two directions di and dg of S are called distinct if di ^ adg V a > 0. 
A direction d of 5' is called an extreme direction if it cannot be written as a 
positive linear combination of two distinct directions, i.e., if d = Aidi 4- A^dg 
V Ai, Ag > 0 then di = adg for some a > 0. 

Thieorem 2.5.7 in Bazaraa [11]: {Representation Theorem) Let 5 be a nonempty 
polyhedral  set  in En of the form {x : Ax < b and x > 0},  where A is  an mxn 
matrix with rank m and b is an m vector. Let xi,..., Xk be the extreme points 
of S and di,..., di be the extreme directions of S. Then x € 5 if and only if 
X can be written as 

k I 
x =  gA,Xi4-^ / / ,d i ,  

t=l  1=1 

1=1 
A, > 0 V z = 1,2,..., 

/z,' > 0 V z = 1,2, 
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Proof: 

This proof is modified from the proof of theorem 3.4.6 in Bazaraa [11]. 

1. Since S is compact and / is continuous on S, f  assumes a maximum at x' € S. 

If X is an extreme point of S, then we are done. Otherwise, by thereon 2.5.7 

in Bazaraa [11], x' = where = 1, A,- > 0 V i, and xi is an 

extreme point of 5 V i. By strictly convexity of /, we have 

I]A,xA < I]A,/(xi). (J.l) 
$=1 / I'ssi 

But since /(x') > /(xi) V i ,  we obtain 

/(*') > /(xi) V i  

A,/(x') > A,/(xi) V i ('.' A, > 0) 

E A,/(x') > ^ A,/(xi) 
1=1 i=i 

/(xO ̂  Z A,/(xi). (•.' ^ A, = i) (J.2) 
1=1 *=1 

(J.2) contradicts (J.l). Thus we know that x' cannot be a non-extreme point. 

This concludes the proof. 

/(%') = / ( 
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APPENDIX K. THE GLOBAL MAXIMUM OF j/, d, ej, • •, Cn) IS 

INVARIANT WHEN {x,y) IS AT ANY OF THE VERTICES OF 

We show that there exists a global maximum of Î/, ci, cg,..., e„). Further­

more, given that is one half the length of a side of (T„. PI, P3, P4 are the four 

vertices of Gn such that Pi has Cartesian coordinate of (sn,5„), and P2 has Cartesian 

coordinate of (—5„,a„), and P3 has Cartesian coordinate of (—5„,—s„), and P4 has 

Cartesian coordinate of (5„, -s»), then the global maximum of y, €%, eg,, e„) 

occurs only when (®, y) is at one of the vertices of Gn, moreover, the global maximum 

value of gn(z,y,ci,cg,...,e^) is invariant when {x,y) is at any of the vertices of Gn-

Proof: 

1. Given that gn{x,  y ,  ci, eg,..., Cn) is continuous, and the set {(x, y, ei, eg,..., e„) 

: {x^y) e Gn and 0 < < k V i} is closed and bounded, by theorem 7.8 in 

Curtis [20] (see section 5.3.2) we obtain that there exists a global maximum 

of sfn(a:, y, €1, eg,..., c„). Let's say the global maximum of 5„(aj, y, ei, cg,..., e„) 

occurs when 

(x,y) = {xb,yh) 

i^i^yi)  — i^bi^ybi)  V Z,  (K. l )  

with the corresponding value of (ei, eg,..., e„), say (en, e^g,..., e6n). Given €bi 

V i, by Proposition 3 in Appendix A we obtain that gfn(a;,y,e6i,e(,2,...,e(,n) 
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is strictly convex for (a;, y). As a result, by Theorem 2 in Appendix J, the 

maximum of gnix, y, Cbi, e&g,.,., C4„) occurs only when (x, y) is at an extreme 

point. Thus we claim that {xb,yb) must be at one of the vertices of Gn-

2. Now we want to show that the global maximum value of gn{x, j/, ei, eg,, e„) 

with (x, y) of Pi{sn, s^) is equal to the global maximum value of gn{x, y, ei, eg, 

..., c„) with {x,y) of Psi—Sn^—Sn). The argument is as follows. Let's say a 

global maximum of 5n(®> y> ci, eg,..., Cn) with (x, y) of Pi(5„, s„) occurs when 

V i ,  

and with the corresponding global maximum value, say Uri. i.e., 

Url = \/(a:,a - s„)2 + {yt, - s„)2. 
i=l 

Furthermore, let's say the global maximum of gn{x,  y ,  ci, eg, • • •, £«) with (x, y)  

of Pai—Sn^ —Sn) occurs when 

— (®tpj2/ip) V z, 

and with the corresponding global maximum value, say Ura. i.e., 

Ur3 = ^ \/i^ip — (—•Sn))^ + {yip — ("-Sn))^-
1=1 

Suppose that Uri ^ Urz and Ur\ > Urz. Given n = 4m, we construct a new 

layout of say V i such that 

~ Via) V 2. (K.2) 

Thus by (K.2), we obtain 

)/(a:« - am)' + (%/» - 5„)2 = \/{-Xi, - (-s„))2 + (-j/,-, - (-s„))2 V i ,  
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^ \ /{xia — 5n)^ + (î/ta - 5„)2 = ^ \J{-Xia — (—3»))^ + ("î/is " (--Sn))^, 
1=1 1=1 

t^rl = 53 — ("•S"))^ + {~yia — (—(K.3) 
t=l 

Observing from (K.3) that when {x,y)  = (—5„, -5„), we obtain a value of UT\ 

for gn{x, y, ci, £2» • • • > Cn) which, by our assumption is greater than Urs- This con­

tradicts the fact that Urs is the global maximum value of gn{x, y, ei, eg,, e^) 

when {x,y) = (—Sn,—s„). Thus our assumption of Uri > Urs is not true, i.e., 

Uri ^ Ur3. Applying the same procedure to the assumption of Uri < Urs, we 

can show easily that this assumption is not true either. Therefore, we conclude 

that — ^r3* 

3. Next, we want to show that the global maximum value of flr„(x, y,  ei, eg, . . . ,€„)  

with (x, y) of Pi(s„,s„) is equal to the global maximum value of ffn(x, y, ei, eg, 

..., c„) with {x,y) of PgC—The argument is as follows. Let's say the 

global maximum of gn{x, y, ei, eg,..., e^) with {x,y) of Pg(-Sn, s„) occurs when 

— {xioiVio) V Î, 

and with the corresponding global maximum value, say Ut 2 .  i.e., 

UT2 = Yl\ l{Xio - (-5„))2 + {yio -  3„)2. 
t=l 

Suppose that Uri ^ Ut2 and Ur\ > (4%. Given n = 4m, we construct a new 

layout of (xi,yi), say {xiz,yiz) V i such that 

{ x i z , y i z )  = (-%,%/») V i .  (K.4) 

Thus by (K.4), we obtain 

\ / { X i s  - 5„)2 + (j/i, - 5„)2 = ^ J { - X U  -  ( S n ) ) ^  +  (î/ia - 5„)2 V i ,  
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=> Z -  SnY + ivi» -  3ny = E - (-5n))^ + {Vis -  5„)2, 
1=1 i=l 

=>Url=Yl> - (-5n))^ + (î/t5 - «n)^. (K.5) 
i=l 

Following the argument in proof statement 2, we conclude that Uri = Ur2-

4. Let's say the global maximum of y, 61,62,..., 6„) with (z, y) of --Sn) 

occurs when 

— (®»o»î/i 'c)  ^  

and with the corresponding global maximum value, say Ur4. i.e., 

Ur4 = y(^«c ~ '®n)^ + (f«c ~ (~'Sn))^. 
i=l 

Following the procedure in proof statement 3, we can show that Uri = Uri. 

5. Given that Ur\ = t/r3> = (/rz, and Uri = (/r4 as we have shown, we obtain 

Uri — Ur2 — Ur3 — Ur4' 

This concludes the proof. 
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APPENDIX L. THE GLOBAL MAXIMUM OF 5„, d, ej,..., e„) 

OCCURS WHEN e. = «, V e 

Recall that gn{x^ y , ei, eg,, e„) = 23?=! \/ixi - x)^ + (y< — y)^. We show that 

for any element in gnisn, a», ci, cz, .., Cn), say g^i (c.) = yj{xi - + {yi - Sn)^, the 

global maximum of flfni(ci) for 0 < e,- < « occurs when c, = K. Then it is clear that 

the global maximum of gnisn^<Snj 6i ,€2,  - -  ,  Cn) occurs when e,- =  « V i .  

Proof: 

1. Taking the first partial derivative of flfni(c«) with respect to Cj, we obtain 

dgnijej) _ 1 2((1 + e,) cos dj - cos dj + 2((1 + Cj) sin ôj - Sn) sin Oj 

2 y((l + e,) cos $i - 5„)2 + ((1 + e.) sin 9i - 5„)2 

_ 1. 2(1 + Ct) - 23n(cos^< + sin^t) 

2 ^((1 + e.) cos Oi - 5n)2 4- ((1 + c.) sin Oi - 5„)2 

Since {x,y) 6 where C Int(D) and {sn,sn) is the upper right vertex of 

Gn, we obtain 

Sn < (L.2) 

2. Investigating the numerator of the right hand side of (L.l), we obtain 

2(1 + C,) — 25„(COS^,- + sin^,) 
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> 2 — 23»(cos9i + sin0,) ('/ e,' > 0) 

> 2-2^(cos0.+sin0i) (•; (L.2)) 

= 2 — \/5(cos 9i + sin 0,) 

> 2 — y/2xy/2 ( '. ' sin 9i  + cos < y/2)  

= 0. (L.3) 

Substituting (L.3) into (L.l), we obtain 

> 0. (L.4) 

By (L.4) we know that ffnii^i) is a strictly increasing function of e,. Thus we 

know that the global maximum of gni(^i) occurs when e, = k. 

This concludes the proof. 
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APPENDIX M. THE GLOBAL MINIMUM VALUES OF /i„(5„,5„, ei, 

G2, •••> ^n) V C| AND hn(Sn,—Sn, £1, f ^n) V Cf ARE EQUAL 

Proof: 

1. Recall that 

^n(®> Î/» ^25 • • • 1 ^n) — ^3 
X i  —  X  

i=i \/{xi - xY + {vi -  vY 

Let LneO'pi be a global min i m u m value of hn{sn, ci, eg,, c„) V c, and Lnce'p2 

be a global minimum value of —a», ci, cg,..., V e,. Suppose that 

^ncO'pi ^ ^nc9*p2i and ^ncô^pï ^ ^ncd*p2* Let S Say ijncô^pi occurs when 

(®t)î/t) — (f-iliî/jl) V î. (M.l) 

Then we construct a new layout of say {xi2,yi2), such that 

{Xi2,yi2) = (a:ii,-î/ti) V i .  (M.2) 

From (M.2) we obtain 

— Sn Xi2 — 5n 

\J{Xi\ — 5„)2 + {yn — 5„)2 \J{^i2 — + (j/i2 " ( — -9»))^ 

^ ®il — Sn ^ X{2 — Sn 

V i  

= E 
«•=1 ^(®,l - 5n)^ + {yn - •SnY »'=1 \/(®t2 " -Sn)^ + (j/i2 " ("•^n))^ 

Xi2 

S • / ( t i l + ( m ,  
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We observe from (M.3) that when {x,y) = (5„,—s„), the layout of (z,,y,) = 

{ X i 2 , y i 2 )  V  i  w i l l  r e n d e r  a  v a l u e  o f  L n c $ ' p i  f o r  A n ( ® , î / , c i , c 2 , w h i c h  b y  

our assumption is less than Lnc9'p2' This contradicts the fact the Lnc9'p2 is a 

global minimum value of —s„, ei, 62,..., V e<. Thus we know that our 

assumption of Lnce'pi < Lnce'p2 is not true. Applying the same procedure to the 

assumption of XncS'pi > we can show easily that this assumption is not 

true either. Therefore, we obtain 

i'ncB'pl — Lnc9'p2' 

This concludes the proof. 
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APPENDIX N. Subroutine of finding Z/ncS' 

In light of the result of chapter 4.2.3, we can use the following subroutine to find 

the LficB* • 

Subroutine LCTHETA {an,n,LncB>) 

«:= 0.05; 

testl:= 0; 

test2:= 0; 

test3:= 0; 

test4:= 0; 

9:= {i -  l)f ; 

*** Divide the annulus into four divisions by finding the four 

*** dividing points nl, n2, n3, and n4. 

for i from 1 to n do 

if (testl = 0) then 

tl:= sin0; 

if tl > 5„ then 
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nl:= i; 

testl:= 1; 

endif; 

endif; 

if (test2 = 0) then 

if (test! = 1) and {6 > then 

n2:= i; 

test2:= 1; 

endif; 

endif; 

if (tests = 0) then 

t3:= sin0; 

if (test2 = 1) and (tS < s„) then 

n3:= i; 

test3:= 1; 

endif; 

endif; 

if (test4 = 0) then 

if (tests = 1) and {6 > |7r) then 

n4:= i; 

test4:= 1; 

endif; 

endif; 

enddo; 
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*** Calculate the minimum sum of , (i+t,)cogg-an 

*** when e,' falls in the second part of division IV where y > 0. 

for i from 1 to (nl - 1) do 

x[i]:= cos 0; 

y[i]:= sin 

*** Calculate the minimum sum of > (H-ei)cogg-an 
yj ((1+ej) COS B-Sn )2+((l+«i) sinS-ifi 

*** when £,• falls between the boundary of divisions I & IV. 

if ((1 + «) sin 9 > s„) then 

testa! := , i 
^(cosff—in) 

testa2:= (i+«)co.g-,» . 
y/ ((l+«) COS O-Sn )'+((!+«) sin 0-Sn )' 

endif; 

if (testai > testa2) then 

x[i]:= (1 + /c)cosd 

y[i]:= (1 + K)sm9 

endif; 

enddo; 
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•" Calculate the minimum sum of 

*** when e,' falls in division I. 

for i from nl to (n2 - 1) do 

x[i]:= (1 + K)COS^; 

y[i]:= (1 + «) sinO; 

enddo; 

«"2:= E?i;; -Ifa 

«• Calculate the minimum sum of 

*** when 6, falls in division II. 

for i from n2 to (n3 - 1) do 

x[i]:= cos 

y[i]:= sind; 

enddo; 

COSD.- L.=„2 ^(.W-.„)H(VW-.N)»' 

»" Calculate the minimum sum of 

*** when e< falls in division III. 
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count3:= 0; 

for i from n3 to (n4 - 1) do 

Calculate the minimum sum of 

*** when c< falls between the boundary of divisions II & III. 

if ((1 + K) sin 0 > 3n) then 

count3:= counts + 1; 

endif; 

x[i]:= (1 + «) cos 6; 

y[i]:= (1 + «)sin0; 

enddo; 

if (counts = 0) then 

C°s4:= 

else 

cos4:= -counts + Vm.1-S7(°,|.1-..)'' 

endif; 

••• Calculate the minimum sum of 

*** when e, falls in the first part of division IV where y <0. 

for i from n4 to n do 
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x[i]:= cos#; 

y[i]:= sin#; 

enddo; 

cos5:= E?=n4 

Lnc9i'= cosl + cos2 + cos3 + cos4 4- cos5 
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APPENDIX O. VALUES OF s„ AND z; 

Recall that « = 0.05 and z* = o(n)«. The results of a;* are obtained in Table 0.1 

by implementing the iterative algorithm through Maple programming language [24]. 

It is clear that all the values of x* < /c, thus we know that a{n) < 1 V n. 

Table 0.1: Values of 5n and x*. 

n 5n X *  

4 0.091163 .0263719 
8 0.134066 .0250855 
12 0.167033 .0328793 
16 0.194579 .0292820 
20 0.218713 .0333798 
24 0.240451 .0307184 
28 0.260389 .0335166 
32 0.278911 .0314445 
36 0.296281 .0335726 
40 0.31269 .0318829 
44 0.328282 .0336008 
48 0.343168 .0321762 
52. 0.357435 .0336170 
56 0.371155 .0323863 
60 0.384387 .0336271 
64 0.397178 .0325441 
68 0.409571 .0336338 
72 0.4216 .0326671 
76 0.433296 .0336385 
80 0.444685 .0327655 
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Table 0,1 (Continued) 

n •Sn x' 

84 0.455789 .0336418 
88 0.466629 .0328462 
92 0.477224 .0336444 
96 0.487588 .0329134 

100 0.497737 .0336463 
104 0.507684 .0329704 
108 0.517439 .0336479 
112 0.527014 .0330192 
116 0.536418 .0336491 
120 0.54566 .0330616 
124 0.554749 .0336500 
128 0.563691 .0330987 
132 0.572493 .0336509 
136 0.581163 .0331314 
140 0.589705 .0336515 
144 0.598125 .0331605 
148 0.606428 .0336521 
152 0.61462 .0331865 
156 0.622703 .0336525 
160 0.630684 .0332100 
164 0.638564 .0336530 
168 0.646349 .0332312 
172 0.654041 .0336533 
176 0.661644 .0332505 
180 0.669161 .0336536 
184 0.676594 .0332681 
188 0.683946 .0336539 
192 0.691221 .0332842 
196 0.69842 .0336541 
200 0.705545 .0332991 
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APPENDIX P. GLOBAL MAXIMUM VALUES OF c„) ^ q 

Let Uhn be the global maximum value of for a{n)K < x < s„, 

—< y < z, and 0 < c,- < « V i. Recall that K = 0.05 and x* = a(n)K. Let £/jî„ 

be the simulated value of global maximum of when the simulated 

annealing was run for i  times of 10,000 iterations. The simulated results of say 

and f/^„, are obtained in Table P.l by simulated annealing [22] [23] as follows. 

The corresponding s„ value is obtained by Maple [24]. 

Table P.l: Values of s„, and C/^„. 

n UL UL 
4 0.091163 -0.205188 -0.205200 
8 0.134066 -0.017482 -0.018358 

12 0.167033 -0.039753 -0.038604 
16 0.194579 -0.043691 -0.041682 
20 0.218713 -0.068897 -0.065078 
24 0.240451 -0.073370 -0.076663 
28 0.260389 -0.099554 -0.099569 
32 0.278911 -0.105222 -0.109910 
36 0.296281 -0.127764 -0.126346 
40 0.31269 -0.142120 -0.132072 
44 0.328282 -0.165959 -0.159925 
48 0.343168 -0.169063 -0.156165 
52 0.357435 -0.193227 -0.188526 
56 0.371155 -0.199142 -0.193109 
60 0.384387 -0.235228 -0.226890 
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Table P.l (Continued) 

n 5n UL uL 
64 0.397178 -0.236724 -0.233487 

68 0.409571 -0.266254 -0.263201 

72 0.4216 -0.275337 -0.262480 

76 0.433296 -0.295563 -0.291862 

80 0.444685 -0.296339 -0.302680 

84 0.455789 -0.327015 -0.332363 

88 0.466629 -0.336041 -0.325248 

92 0.477224 -0.363474 -0.355351 

96 0.487588 -0.371998 -0.370609 

100 0.497737 -0.393707 -0.380711 

104 0.507684 -0.407889 -0.392792 

108 0.517439 -0.430777 -0.430309 

112 0.527014 -0.434817 -0.452850 

116 0.536418 -0.462311 -0.455117 

120 0.54566 -0.491376 -0.473234 

124 0.554749 -0.501548 -0.505898 

128 0.563691 -0.514511 -0.507112 

132 0.572493 -0.534201 -0.525151 

136 0.581163 -0.541742 -0.534663 

140 0.589705 -0.575636 -0.555629 

144 0.598125 -0.578072 -0.579330 

148 0.606428 -0.616998 -0.610064 

152 0.61462 -0.623307 -0.593199 

156 0.622703 -0.644200 -0.636165 

160 0.630684 -0.654850 -0.647470 

164 0.638564 -0.668033 -0.673575 

168 0.646349 -0.690696 -0.664614 

172 0.654041 -0.712634 -0.684492 

176 0.661644 -0.739486 -0.707006 

180 0.669161 -0.741105 -0.741567 

184 0.676594 -0.758325 -0.757780 

188 0.683946 -0.761139 -0.770920 

192 0.691221 -0.767522 -0.753039 

196 0.69842 -0.802727 -0.817525 

200 0.705545 -0.817639 -0.814140 
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It is clear that both and < 0. The simulated annealing [22] [23] states 

that when the iterations approach infinity, the corresponding simulated value of 

a^h„{x,y^uti,...,en) converges to Uhn- Note that for each n, is very close to C/^„, 

This indicates that the simulated annealing results of start to con­

verge when the iteration is larger than 10,000 and shows that both t/^„ and U^n are 

good approximations of Uhn' Thus we conclude that Uhn < 0 V n. 
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APPENDIX Q. DERIVATION OF/(x, y) 

If 0'(zc, Dc) € A*^ then we can use Taylor theorem to approximate O'Ai by QiAi. 

Here QiAi is the projection of O'Ai over line OAi (see Figure 5.1). Thus we obtain 

O'Ai » QiAi 

= l + ei-Wi. (Q.l) 

Here OQi is the x coordinate of point 0'(xc, Vc) with respect to a new coordinate 

system where its new origin is 0(0,0) and its new x axis, say x', is on line OAi (see 

Figure 5.1). By the transformation formula (8.8) in Mortenson [26], we can show 

that 

OQi = ajgcos^,• +j/csin^<. (Q.2) 

Substituting (Q.2) into (Q.l), we obtain 

QiAi = l + €i-XcCos$i — ycS\n6i. (Q.3) 

Thus we can approximate f{xc, Vc) by /(xc, j/o) as follows: 

f i ^ C I  V c )  

= £ \\/{xi - XcY + [Vi - VcY - ̂  £ \/(®j - Xof + {vj - yc)4 ('.' (3.1)) 
.=1V %j=i /  
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= (•; O'A, = yk - + (!/i -%):) 

2 

(•.• (Q.i)) 

= fi^eiVc) (by definition) 

n / 2 n 
= j 1 + e< — Xc cos 9i — j/c sin Oi ^(1 + e j  — X c  cos 9j — y c  sin d j )  

.=1 \ " j=i / 

(•.' (Q.3)) 

= ^ [ 1 + e, - aîc cos d i  - yc sin - (1 + - ̂  Cj - — cos d j  -  —  sin ^j) ) 
t=i V " 3=1 " i=i i=i / 

= ][] 11 + <% -- 2C COS di - yc sin - (1 + - S ̂I) 1 
«•=1 \ "i=i / 

27r 
('.' = (î — 1)— and Lemma 3 in Appendix A. 1) 

n 

n ( 1 " \ ̂  
= ]>] Ci - aCc cos Bi - j/c sin &{ e, | . (Q.4) 

'•=1 V " i=i / 

Since (aie, V c )  are dummy variables, thus we can rewrite (Q.4) as follows: 

" / 1 " \ ̂  
f(x, y) = e,- - ® cos 9i - y sin^< ^ ej . 

1=1 V "i=i / 

This concludes the derivation of /(x, y) for n data points. 
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APPENDIX R. FINDING THE GLOBAL MINIMUM OF cos a, 

Let cos a* be the global minimum value of cos a, . We develop five steps to 

determine it. 

1. cos a* occurs when e,' = 0. 

2. cos a* occurs when {xo,yc) € BdryiA"). 

3. cos a* occurs when (xcjJ/o) is at a vertex of A*. 

4. The global minimum of cos a,- V 0 < Oi < 2Tr is invariant when (zg, j/c) is at any 

one of the vertices of A*. 

5. Based on steps 3 and 4, we can choose (xc,j/c) = (—«> «) to find cos a* with­

out loss of generality. Given {xc,yc) = (—«,«), cos a* occurs when cos#; = 

^nd sing, = 

The details are as follows. 

Proof: 

1. Suppose that cos a* occurs when Oi — 0, and A, = ^4» where A. has a polar 

coordinate of (1 + e,,0,) such that e, > 0 as shown in Figure R.l. Then we 

obtain 

cos a* = 
O'A. 
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Here by the assumption, we know that cos a. = cos a*. However we can find a 

point A'^ with a polar coordinate (1,0«) and obtain a new value of cos a,, say 

cosa^, such that 

q.A: 

o'A: m 
< cos a,. (Il.l) 

By (R.l) we know that it contradicts the assumption that cos a. is the global 

minimum value of cos a,-. Thus we know that cos a* occurs only when e, = 0. 

This concludes the proof of step 1. 

2. Suppose that cos a* occurs when {xc,yc) is not on the boundary of A', and 

(®»îî/t) = as shown in Figure R.2. Then we obtain 

Q»A^ 
cosa. -

Here by our assumption, we know that cos a* = cos a*. We can find a point 

0" € A* such that O" is the intersection of half line QmO' and the boundary of 

A". Then we obtain a new value of cos a,-, say cosa^, such that 

, Q»A, 
= 3^ 

< cos a,. (R.2) 

Following the argument in proof statement 1, we know that cos a* occurs only 

when {xc,yc) G Bdry{A*). This concludes the proof of step 2. 

3. Since both {% :0 < Oi < 27r} and A* are symmetrical at 0(0,0), we can 

restrict the possible location of 0'(xc, Pc) to one side of Bdry(A*), say y = k 
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and — K < x < K .  Suppose that cos a* occurs when {xc,yc) is not at the vertex 

and {xi,yi) = (a:«,j/,) as shown in Figure R.3. Then we obtain 

QmA» 
= m:' 

Here by our assumption, we know that cos a. = cos a*. We can reduce (or 

maintain) the value cos a, by moving the point 0'{xc, j/c) along the line y = k 

towards positive (or negative) x direction. In the case of Figure R.3, we move 

0'{xc,ye) towards positive x direction in order to reduce the cos a,. Following 

the argument in proof statement 1, we know that cos a* occurs when {xc,yc) is 

at the vertex of A". This concludes the proof of step 3. 

4. {9i : 0 < < 27r} is symmetrical to point 0(0,0). Therefore, the global 

minimum value of cos aj V 0 < < 27r is invariant when (zc, j/c) is at any one 

of the vertices of A*. This concludes the proof of step 4. 

5. Let's say cos a* occurs when (x^î/c) = (—«,«). Then the problem is simplified 

to find a angle 9i to minimize the cos a,- as shown in Figure 5.2. Applying the 

law of cosine [31] to the triangle shown in Figure 5.2, we obtain 

\+WA^-2K^ cos a,- = 
2D^ 

1 + « cos di — K sin 9i 

y(cos^( + /c)2 + (sin — «)2 

Taking the first partial derivative of cos a, with respect to 9i, we obtain 

d cos «,• _ /c^(sin + cos ^,)(2« + cos ûi — sin ^,) 
ddi ((cos + /c)2 + (sin — /c)2)i-5 

Since the result of cos a,- V — JTT < ^,- < ^rr is identical to its counterpart V 

f^r < 9i < ITT, thus we only consider the case of —< 0,- < |7r. Making 
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= 0, we can show that cos a, is minimized when 

2K + cos 9I — sin 9I — 0. 

Solving (R.3), we obtain 

-2K 4- \/2 - 4/c2 
COS V| — ' ) 

. . 2/c + y/2 - 4/c2 
sm^i = . 

This concludes the proof of step 4. 
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Figure R.l: Diagram of {xc,yc) and (x„y,) when cos a* occurs - Example 1. 

Figure R.2: Layout of («cî/c) and (x„y») when cos a* occurs - Example 2. 



www.manaraa.com

172 

y 

Figure R.3: Representation of (xc, yc) and (x,, j/«) when cos a* occurs - Example 3. 
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APPENDIX S. f{Bdry{Gn)) > /(0,0) 

Proof: 

1. For {xc,yc) € Gn, it is clear that 

fixcVc) < f(0,0). 

If (xctDc) only occurs at (0,0), then we have 

f{Bdry{Gr,)) > /(0,0). (S.l) 

Otherwise, if {xc,yc) ^ (0,0), then 

ÈAi > 0. (S.2) 
1=1 

Following the same procedure as in chapter 4.1.1, we obtain 

Sm > —\/n — 1/c. (S.3) 

Thus we know that if (arc, j/c) ^ (0,0), then {xc, yc) is restricted to be in Int{Gn). 

As a result, we obtain 

f{Bdry{G,)) >/(0,0). (S.4) 

This concludes the proof. 
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APPENDIX T. THE LIMIT OF 5„ 

Proof: 

1. Let circle CAl be a circle with center at point Ai with a polar coordinate of 

(1,0) and a radius of 1 — \/n — 1/c, and circle CA2 be a circle with center at 

point A2 with a polar coordinate of (1,^) and a radius of 1 — \/n — 1« as 

shown in Figure T.l. The circle CAl intersects the x axis at point L. We draw 

a circle, say circle CAO, with center at point L and a radius of 1 — \/n — 1/c. It 

is clear that point Aj will be outside the circle CAO. Therefore, we obtain 

AiL < AgL. (T.l) 

Thus we know that the circles CAl and CA2 will not intersect at point L, 

otherwise AiL = AgL, which contradicts (T.l). Let point M be the intersection 

of two circles of CAl and CA2. As a result, the x coordinate of point M, 5n, is 

greater than OL. i.e., 

Sn > OL 

Sn > 1 - (1 - y/n — 1/c) 

Sn > Vn — 1/c. 

This concludes the proof. 
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CAO 

Figure T.l: An Illustration of as the x Coordinate of the Intersection of Two 
Circles CAl and CA2. 
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APPENDIX U. MEASUREMENTS OF WORN-OUT BUSHING 

Table U.l: Measurements of Worn-Out Bushing. 

level order of data X y z 
1 1 0.36559 0.05095 0.23454 

2 0.35227 0.10884 0.23445 
3 0.32819 0.16128 0.23434 
4 0.30055 0.21177 0.23425 
5 0.26280 0.25477 0.23434 
6 0.22161 0.29570 0.23448 
7 0.17180 0.32272 0.23458 
8 0.11895 0.34481 0.23478 
9 0.06417 0.36202 0.23484 

10 0.00635 0.36613 0.23484 
11 -0.05319 0.36126 0.23486 
12 -0.10834 0.34863 0.23491 
13 -0.16229 0.32757 0.23491 
14 -0.21053 0.29926 0.23491 
15 -0.25548 0.26247 0.23493 
16 -0.29335 0.22008 0.23497 
17 -0.32448 0.17160 0.23500 
18 -0.34754 0.11891 0.23502 
19 -0.36201 0.06384 0.23505 
20 -0.36806 0.00586 0.23510 
21 -0.36433 -0.05419 0.23517 
22 -0.35178 -0.10980 0.23508 
23 -0.33029 -0.16367 0.23506 
24 -0.30138 -0.21256 0.23502 
25 -0.26417 -0.25696 0.23499 
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Table U.l (Continued) 

level order of data X y z 
1 26 -0.22064 -0.29588 0.23487 

27 -0.17196 -0.32569 0.23474 
28 -0.11955 -0.34811 0.23480 
29 -0.06408 -0.36229 0.23479 
30 -0.00594 -0.36747 0.23473 
31 0.05426 -0.36304 0.23464 
32 0.10917 -0.34966 0.23461 
33 0.16143 -0.32878 0.23468 
34 0.21086 -0.29942 0.23468 
35 0.25501 -0.26291 0.23456 
36 0.29297 -0.21985 0.23454 
37 0.32287 -0.17174 0.23453 
38 0.34952 -0.11982 0.23453 
39 0.36442 -0.06475 0.23448 
40 0.36135 -0.00675 0.23440 

2 1 0.36596 0.01356 1.11275 
2 0.35923 0.07162 1.11265 
3 0.34395 0.12697 1.11273 
4 0.31999 0.17852 1.11308 
5 0.28763 0.22650 1.11349 
6 0.24933 0.26810 1.11358 
7 0.20413 0.30373 1.11372 
8 0.15508 0.33156 1.11376 
9 0.10104 0.35197 1.11380 

10 0.04450 0.36335 1.11382 
11 -0.01469 0.36579 1.11384 
12 -0.07191 0.35896 1.11386 
13 -0.12661 0.34343 1.11390 
14 -0.17862 0.31952 1.11389 
15 -0.22627 0.28768 1.11388 
16 -0.26842 0.24869 1.11402 
17 -0.30383 0.20391 1.11401 
18 -0.33161 0.15409 1.11403 
19 -0.35148 0.10055 1.11404 
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Table U.l (Continued) 

level order of data X y z 
2 20 -0.36304 0.04418 1.11407 

21 -0.36550 -0.01430 1.11413 
22 -0.35855 -0.07206 1.11405 
23 -0.34302 -0.12689 1.11398 
24 -0.31919 -0.17828 1.11393 
25 -0.28721 -0.22626 1.11392 
26 -0.24852 -0.26813 1.11379 
27 -0.20301 -0.30411 1.11375 
28 -0.15356 -0.33183 1.11377 
29 -0.10122 -0.35145 1.11371 
30 -0.04469 -0.36295 1.11369 
31 0.01506 -0.36532 1.11368 
32 0.07240 -0.35829 1.11370 
33 0.12733 -0.34247 1.11365 
34 0.17856 -0.31968 1.11356 
35 0.22650 -0.28747 1.11355 
36 0.26876 -0.24892 1.11354 
37 0.30454 -0.20403 1.11353 
38 0.33265 -0.15458 1,11354 
39 0.35192 -0.10086 1.11351 
40 0.36336 -0.04483 1.11345 

3 1 0.36755 0.03249 1.99229 
2 0.36050 0.09235 1.99208 
3 0.33969 0.14634 1.99198 
4 0.31220 0.19640 1.99186 
5 0.27786 0.24265 1.99211 
6 0.23661 0.28265 1.99226 
7 0.18991 0.31612 1.99251 
8 0.13886 0.34148 1.99269 
9 0.08366 0.35886 1.99275 

10 0.02623 0.36724 1.99277 
11 -0.03380 0.36583 1.99276 
12 -0.09028 0.35585 1.99282 
13 -0.14398 0.33732 1.99286 
14 -0.19465 0.31027 1.99290 
15 -0.24033 0.27578 1.99289 
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Table U.l (Continued) 

level order of data X y z 
3 16 -0.27997 0.23468 1.99291 

17 -0.31248 0.18786 1.99293 
18 -0.33762 0.13659 1.99295 
19 -0.35434 0.08206 1.99299 
20 -0.36280 0.02578 1.99303 
21 -0.36196 -0.03390 1.99309 
22 -0.35217 -0.08969 1.99304 
23 -0.33383 -0.14323 1.99296 
24 -0.30722 -0.19365 1.99297 
25 -0.27349 -0.23890 1.99288 
26 -0.23210 -0.27949 1.99279 
27 -0.18572 -0.31243 1.99273 
28 -0.13553 -0.33748 1.99271 
29 -0.08129 -0.35479 1.99267 
30 -0.02441 -0.36353 1.99261 
31 0.03528 -0.36294 1.99266 
32 0.09128 -0.35325 1.99265 
33 0.14453 -0.33505 1.99259 
34 0.19599 -0.30946 1.99258 
35 0.24194 -0.27544 1.99257 
36 0.28140 -0.23378 1.99249 
37 0.31417 -0.18726 1.99243 
38 0.33918 -0.13577 1.99243 
39 0.35624 -0.08183 1.99235 
40 0.36755 -0.02527 1.99230 
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